Palitra21.ru

Домашний уют — журнал
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простой ответ на вопрос: как проверить трансформатор мультиметром

Простой ответ на вопрос: как проверить трансформатор мультиметром

В бытовых приборах часто используется блок питания, при выходе из строя которого важно знать, как проверить трансформатор мультиметром. Это значительно снизит затраты на ремонт оборудования. Достаточно будет заказать новый или отремонтировать старый трансформатор. Если сделать все своими руками, экономия на диагностике будет существенной.

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Читать еще:  Подробная инструкция по использованию мультиметра и его возможностям

Методика проверки трансформаторов (3 способа)

Способ 1

Частотный диапазон «прогонки»:
Трансформаторов питания НЧ: 40-60 Гц.
Трансформаторов питания импульсного блока питания: 8-40 кГц.
Трансформаторов разделительных, ТДКС: 13-17 кГц.
Трансформаторов разделительных, ТДКС мониторов (для ПЭВМ):
CGA: 13-17 кГц.
EGA: 13-25 кГц.
VGA: 25-50 кГц.

Если взять импульсный трансформатор питания, например разделительный трансформатор строчной развертки, подключить его согласно рис. 1, подать на I обмотку U = 5 — 10В F = 10 — 100 кГц синусоиду через С = 0.1 — 1.0 мкФ, то на II обмотке с помощью осциллографа наблюдаем форму выходного напряжения.


Рис. 1. Схема подключения для способа 1

«Прогнав» на частотах от 10 кГц до 100 кГц генератор ЗЧ, нужно, чтобы на каком-то участке Вы получили чистую синусоиду (рис. 2 слева) без выбросов и «горбов» (рис. 2 в центре). Наличие эпюр во всем диапазоне (рис. 2. справа) говорит о межвитковых замыканиях в обмотках и т.д. и т.п.

Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы. Важно лишь подобрать частотный диапазон.


Рис. 2. Формы наблюдаемых сигналов

Способ 2

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы основан на явлении резонанса. Увеличение (от 2-х раз и выше) амплитуды колебаний с генератора НЧ указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура.

Для проверки закоротите обмотку II трансформатора. Колебания в контуре LC исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления в LC контуре, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC контуре.


Рис. 3. Схема подключения для способа 2

Добавим, что для проверки импульсных трансформаторов блоков питания конденсатор С имел номинал 0,01мкФ-1 мкФ, Частота генерации подбирается опытным путем.

Способ 3

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы тот же, что и во втором случае, только используется вариант последовательного колебательного контура.


Рис. 4. Схема подключения для способа 3

Отсутствие (срыв) колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс контура LC. Все остальное, как и во втором способе, не приводит к резкому срыву колебаний на контрольном устройстве (осциллограф, милливольтметр переменного тока).

Проверка трансформатора

Итак, с помощью мультиметра определены обмотки. Теперь можно переходить непосредственно к вопросу, как проверить трансформатор, используя все тот же прибор. Разговор идет о дефектах. Их обычно два:

  • обрыв;
  • износ изоляции, что приводит к замыканию на другую обмотку или на корпус устройства.

Обрыв определить проще простого, то есть, проверяется каждая катушка на сопротивление. Мультиметр выставляется в режим омметра, щупами подключаются к прибору два конца. И если на дисплее показывается отсутствие сопротивления (показаний), то это гарантированно обрыв. Проверка цифровым мультиметром может быть недостоверной в том случае, если тестируется обмотка с большим количеством витков. Все дело в том, что чем больше витков, тем выше индуктивность.

Читать еще:  Транзистор КТ3102: КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Д, КТ3102Е

Замыкание проверяется так:

  1. Один щуп мультиметра замыкается на выводной конец обмотки.
  2. Второй щуп попеременно подсоединяется к другим концам.
  3. В случае с замыканием на корпус второй щуп соединяется с корпусом трансформатора.

Есть еще один часто встречаемый дефект – это так называемое межвитковое замыкание. Оно происходит в том случае, если изоляция двух соседних витков изнашивается. Сопротивление в этом случае у проволоки остается, поэтому в месте отсутствия изоляционного лака происходит перегрев. Обычно при этом выделяется запах гари, появляются почернения обмотки, бумаги, вздувается заливка. Мультиметром этот дефект также можно обнаружить. При этом придется узнать из справочника, какое сопротивление должно быть у обмоток данного трансформатора (будем считать, что его марка известна). Сравнивая фактический показатель со справочным, можно точно сказать, есть ли изъян или нет. Если фактический параметр отличается от справочного вполовину или больше, то это прямое подтверждение межвиткового замыкания.

Внимание! Проверяя обмотки трансформатора на сопротивление, не имеет значение, какой щуп к какому концу подсоединять. В данном случае полярность не играет никакой роли.

Как узнать ток холостого хода у трансформатора?

Ток холостого хода — это ток, который транс потребляет без нагрузки, чем он ниже, тем качественнее рассчитан и изготовлен трансформатор. Низкое качество магнитопровода, межвитковое замыкание, неправильное подключение увеличивают ток холостого хода. Этот ток преобразуется в тепло и если он велик (более 20-100ма) транс может сгореть. Переключите тестер в режим измерения тока и включите последовательно с первичной обмоткой трансформатора. по результату измерения, решайте сами не опасно ли использовать такой трансформатор.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Читать еще:  Как пользоваться строительным лазерным уровнем

Диагностика трансформатора

Как провести диагностику на исправность трансформатора тестером, если мы не знаем его конструкцию? Разберем принцип работы и виды такого оборудования. На магнитный сердечник наносятся витки проволоки из меди конкретного сечения таким образом, чтобы остались выводы для подающей обмотки и вторичной.

  • Передача энергии во 2 обмотку выполняются бесконтактным методом. Тут уже становится понятно, как проверять прибор и определить неисправность. Таким же образом прозванивают простую индуктивность омметром. Витки создают сопротивление, которое можно измерять. Но этот метод применим, когда известна необходимая величина. Ведь сопротивление может поменяться в разную сторону в результате нагревания. Это называют межвитковым замыканием.
  • Этот аппарат уже не будет давать свое напряжение и ток. Омметр продемонстрирует лишь обрыв в цепи или одно короткое замыкание. Для вспомогательной диагностики работоспособности применяют проверку замыкания на корпус таким же омметром.
  • Это определяется по толщине проводов, которые выходят. Если прибор понижающий, то выводные проводники будут больше подводящих проводников. И получается, что: у повышающего вводные провода толще. Если две обмотки выходные, то толщина бывает идентичной, про это стоит помнить. Самый лучший способ проверить маркировку и отыскать технические параметры оборудования.

Как проверить высоковольтный трансформатор мегаомметром

В вопросе, как проверить силовой трансформатор мегаомметром, важно соблюдать правила безопасности. Перед включением высоковольтного преобразователя следует проконтролировать, не требуется ли заземлить его сердечник. О такой необходимости свидетельствует наличие клеммы «З» или схожего знака. Для проверки состояния преобразователя используется прямой метод. Если же включить трансформатор с нагрузкой и выполнить замеры невозможно, его работоспособность проверяется косвенным методом. Он включает совокупность тестов, отображающих состояние устройства в определенном аспекте:

1. Проверка корректности маркировки выводов обмоток. Мультиметром в режиме омметра прозваниваются все пары выводов. Между выводами от различных катушек сопротивление бесконечно, а в рамках одной катушки – равно конкретному числу.
2. Сопоставление измеренного сопротивления со значениями в справочнике. Отличие на 50% или выше означает наличие межвиткового замыкания или повреждения провода.
3. Выяснение полярности выводов при помощи магнитоэлектрического амперметра или вольтметра с известной полярностью щупов. Он подключается к вторичной катушке. Если она не одна, остальные шунтируются. Через начальную катушку пропускается незначительный постоянный ток. Цепь замыкается и тут же размыкается. При совпадении полярности стрелка отклоняется вправо, при разной полярности – влево.
4. Получение характеристики намагничивания. Этот метод актуален, если есть исходная ВАХ проверяемого трансформатора. Цепь первичной катушки размыкается, а через вторичную пропускается переменный ток. Его сила меняется, и замеряется входное напряжение. Полученная ВАХ сравнивается с исходной. Уменьшение крутизны ВАХ отражает наличие межвиткового замыкания.

Для гарантированного получения достоверных результатов нужно использовать высокоточные приборы. Лучше всего получить эту задачу специалистам.

Тип трансформаторов (мощность, кВА)

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector