Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает стабилизатор напряжения; основные параметры и функции

Питание сети постоянного тока требует выравнивания при входном напряжении ниже или выше допустимого предела. При протекании тока по стабилизатору, оно выравнивается до необходимой величины. Также схему стабилизатора можно выполнить со сменой полярности питания.

Линейные

Такой прибор является делителем, на который поступает нестабильное напряжение, а на его выходе напряжение выравнивается и имеет необходимые свойства. Его принцип действия состоит в постоянном изменении значения сопротивления для создания выровненного питания на выходе.

  • При эксплуатации отсутствуют помехи.
  • Простое устройство с малым числом деталей.
  • При значительной разнице выходящего и входящего питания линейный стабилизатор показывает малый КПД, так как значительная часть производимой мощности переходит в тепло и расходится на сопротивлении.

Параметрический

Такое исполнение прибора с контрольным элементом, подключенным параллельно нагрузке, выполнено на полупроводниковых и газоразрядных стабилитронах.

По стабилитрону проходит ток, который выше в десять раз тока на резисторе. Поэтому такая схема подходит для стабилизации питания только в маломощных устройствах. Чаще всего его применяют в качестве составного компонента преобразователей тока со сложной конструкцией.

Последовательный

Работа прибора видна на изображенной схеме.

Эта схема соединяет два компонента:

  1. Биполярный транзистор, повышающий ток. Он является эмиттерным повторителем.
  2. Параметрический стабилизатор, рассмотренный выше.

Выходное напряжение не зависит от проходящего по стабилитрону тока. Однако оно зависит от вида вещества полупроводника. По причине сравнительной независимости этих величин выходное напряжение получается устойчивым.

При протекании по транзистору напряжение на выходе прибора повышается. При применении одного транзистора напряжение может не удовлетворить потребителя. В этом случае выполняют прибор из нескольких транзисторов, чтобы повысить ток до необходимой величины.

Описание и характеристики стабилизатора напряжения

Напряжению в сети не обязано быть стабильным. Поставщик выдает 220 вольт. Однако, массовое подключение приборов снижает показатель в среднем нас 10%. Это норма. Если напряжение изначально меньше 220-ти, что характерно для частных хозяйств, встает под вопрос даже одновременная работа освещения, плиты, холодильника и чайника.

В дачных товариществах и коттеджах, кстати, проблема часто начинается на участке ответвления кабеля от основной сети. За последнюю отвечает поставщик. Ответвление кабеля уже во власти домовладельца. В общем, причин скачков напряжения много, а итог один – трата нервов и порча электроприборов.

Стабилизатор напряжения для дома – аппарат, в основе которого «лежит» трансформатор. К нему подведена переменная цепь. На другом конце она соединена с диодами. Их в конструкции бывает до 5-ти. Из диодов образуется мост с конденсаторами. За ним стоит транзистор, а за тем регулятор. Выключает автоматику замыкание.

Работа стабилизатора начинается с подачи тока на трансформатор. Диоды, соединенные с транзистором, вступают в работу, если предел напряжения превышен. Конденсатор выступает преобразователем. Дабы он не перегревался в коллекторной цепи, стабилизатор оснащен автоматикой.

Пройдя резистор, ток возвращается на транзистор. Получается, в основе работы героя статьи лежит принцип обратной связи. В аппарате создается переменный ток, в потоке которого электроны могут менять направление.

Так меняется номинальная нагрузка. На выходе поток электронов проходит по обмотке через фильтр. Получается выпрямленный ток нужной и, главное, постоянной мощности.

Основные параметры стабилитрона

Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.


Вольт-амперная характеристика стабилитрона

Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.

Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.

Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.

Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.

Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.

Преимущества и недостатки

По сравнению с аналогичным по принципу работы релейным стабилизатором, электронное устройство обладает гораздо большими преимуществами:

  • Высокая скорость коммутации;
  • Большее количество ступеней регулирования;
  • Более высокая точность;
  • Отсутствие шума;
  • Большой разброс напряжения на входе;
  • Возможность работы при низких температурах;
  • Надёжность.

В отличие от электромеханических реле, время срабатывания которых может достигать 40-60 мс, тиристорные ключи выполняют коммутацию за гораздо более короткий срок, не превышающий 10-12 мс, а у некоторых моделей он может составлять 2-4 мс. Увеличение количества реле ведёт к увеличению энергопотребления самого стабилизатора и снижению времени нормализации напряжения. Электронные стабилизаторы позволяют без особого ущерба увеличить число дискретных ступеней, что положительно сказывается на точности установки.

Читать еще:  Технические характеристики отбойного молотка

Тиристорный стабилизатор бесшумен в работе, и может использоваться при низких температурах, что выгодно отличает его от стабилизаторов других моделей. Схемные решения допускают работу устройства при большом диапазоне напряжения сети. Надёжность электронного стабилизатора определяется в основном надёжностью тиристоров, а они допускают до 10 9 переключений. Недостатком можно считать только высокую цену электронного стабилизатора.

Точность стабилизации

Точность стабилизации или «погрешность» стабилизатора в процентном отношении указывает на величину возможного отклонения выходного напряжения устройства от номинального значения.

Современные стабилизаторы обеспечивают точность в пределах 10%. Зависит этот параметр, в первую очередь, от конструкции. Самой высокой точностью обладают инверторные модели, у которых данный показатель составляет 2%, что практически недоступно для полупроводниковых, релейных и электромеханических стабилизаторов. Столь высокая точность необходима для медицинского, измерительного или промышленного оборудования.

У большинства применяемых в быту электроприборов требования к качеству электропитания чуть ниже: они стабильно функционируют при отклонениях входного напряжения и в 7%. Однако отдельным устройствам всё-таки нужен более высокий показатель точности – это техника, работой которой управляет электроника (автоматические стиральные машины, кондиционеры), а также аудио- и видеоаппаратура, где от качества входного электропитания зависит чистота изображения и звука.

При покупке стабилизатора следует убедиться в том, что его точность соответствует величине допустимых для нагрузки отклонений питающего напряжения. Если потребителей несколько и они обладают различными требованиями к точности входного напряжения, то точность стабилизатора следует выбирать исходя из самого узкого диапазона допустимых колебаний.

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).
Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир): Rвых= rд|| R≈ rд, т.к. R>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.

Зачем они были нужны вчера.

Начнем с того, зачем стабилизаторы напряжения были нужны когда-то. Тут ответ более-менее прост – те, кто заселялся в новые квартиры в 60-70-х годах прошлого века, возможно и сами еще помнят, что в первые несколько месяцев (а то и лет) колебания напряжения в бытовой сети сильно отклонялись от положенных 220 вольт. Что было заметно невооруженным глазом – лампочки время от времени начинали светить вполсилы, а иногда перегорали; изображение на экране черно-белых еще телеприемников при этом тоже бледнело и становилось едва различимым.

Причиной таких неприятностей было, как правило, подключение к сети массы новых потребителей, при котором выходное напряжение с трансформаторных подстанций делилось на сильно большее число – и оттого падало с 220 до 210, а то и 200 вольт. И наоборот – когда потребители от сети массово отключались (например – выключали все, что можно, уходя на работу), то напряжение в сети могло надолго подскочить до 240, а то и 250 вольт.

В таких условиях стабилизаторы напряжения были и в самом деле необходимы. Причем самые первые из них не были даже автоматическими – они представляли собой обычный трансформатор, по внешней обмотке которого надо было вручную перемещать клемму.

Со временем они уступили место феррорезонансным стабилизаторам, а когда в цветных телевизорах стали монтировать импульсные блоки питания, нужда в таких стабилизаторах напряжения и вовсе отпала – благо, что и сильные колебания напряжения в городской электросети ушли в прошлое. Сейчас эти колебания не превышают, как правило 5% , длятся не более минуты и наблюдаются, в основном, в сельской местности.

Читать еще:  Электрическая дрель — разбираемся в особенностях инструмента

Виды стабилизаторов напряжения и их отличия, устройства, функции

Постоянство питающего напряжения обеспечивается стабилизаторами напряжения, которые выполняют свою функцию независимо от скорости изменения показателей. Эффективность приборов очевидна при изменениях силы тока и сопротивления, поэтому не только напряжение является характеристикой сети. Благодаря таким изменениям сохраняется работоспособность техники и пожарная безопасность в любом помещении. Короткое замыкание, перегревание проводов и расплавление изоляции случается из-за увеличенного сопротивления нагрузки. Вот уже на протяжении 65 лет имеются устройства для регулировки напряжения. И если ранее в повседневной жизни преобладали только ферромагнитные стабилизаторы, то в наши дни доминируют релейные, электромеханические и электронные устройства.

В настоящее время выделяют следующие виды напряжения:

  1. Релейные стабилизаторы.
  2. Электромеханические стабилизаторы.
  3. Электронные стабилизаторы.

1. Релейные стабилизаторы напряжения

Бытовой и компьютерной технике, оргтехнике, производственному оборудованию необходима бесперебойная работа, которая осуществляется выравниванием сетевых параметров тока. Безупречная сохранность для пользователей от перегруженности, коротких замыканий и иных отклонений от рабочего тока гарантируется чрезвычайной точностью сохранения заданных характеристик выходного напряжения. Основным элементом релейных стабилизаторов является автоматический трансформатор, а за управление устройством отвечает электронная схема. Витки трансформатора подключаются с помощью реле в соотношении, которое нужно для обеспечения номинальных выходных параметров тока.

Число обмоток трансформатора и количество коммутационных реле определяет количество ступеней регулировки выходного напряжения. Погрешность выходного вольтажа будет больше, если число ступеней меньше. Усредненный показатель – от пяти до семи, самый большой – 9.

Релейные устройства работают по следующей схеме:

  • Подача входного тока и сравнение параметров, которые требуются на выходе, осуществляется с помощью электронной схемы.
  • Вычислив разницу характеристик входного и выходного напряжения, блок управления вычисляет необходимое для стабилизации число обмоток и количество их витков, которые должны быть задействованы.
  • Благодаря реле осуществляется последовательное переподключение витков каждой из трансформаторных обмоток.

В итоге увеличения и уменьшения вольтажа на обмотках трансформатора на выход стабилизатора подаётся ток, параметры которого располагаются в разрешенных для нормальной работы подчинённой сети пределах.

Достоинствами релейных стабилизаторов являются миниатюрность, большой охват входных параметров тока и рабочей температуры. Практически бесшумная работа и невосприимчивость к частотным изменениям входного тока, жизнеспособность и сравнительно низкая цена являются отличительными чертами данного вида стабилизаторов.

К недостаткам стоит отнести сокращение скорости реакции стабилизатора при увеличении точности выравнивания параметров тока. Также следует отметить достаточно скорый износ релейных коммутаторов под влиянием механических и импульсных токовых нагрузок.

2. Электромеханические стабилизаторы напряжения

Главным элементом является трансформатор с отводами. 2-ая составляющая электромеханического стабилизатора – механизм с ползунком. Принцип работы следующий — при сниженном входном напряжении сети ползунок начинает движение по отводам. Движение прекращается, когда на выходе получается стандартное значение. Если оно превышено, он перемещается в обратную сторону. Щетки из графита, поддерживающие выходное напряжение с высочайшей точностью (около 2%), выполняют функцию ползунка-токосъемника, регулировка которого производится плавно. Такая регулировка является главным преимуществом, а если использовать две графитовые щетки, то устройство корректирует напряжение быстрее, т. к. повышается площадь контакта.

Существуют модели (свыше 30кВт), которые снабжаются еще одним трансформатором. Такие модели способны выдерживать высокие перегрузки, несмотря на присутствие движущихся частей.

Существенное упрощение расчета при выборе такого оборудования осуществляется суммой полученной средней его мощности с ее четвертью. Благодаря вышеуказанному сложению обозначается характеристика будущего стабилизатора. Соответственно, при покупке за меньшую стоимость допускается использовать наименьший запас по мощности стабилизатора. Явным техническим преимуществом является отсутствие внесения изменений в сеть по причине невосприимчивости к данному событию. А это очень актуально для медицинских и измерительных приборов, аудиоаппаратуры.

Среди отрицательных характеристик следует выделить износ движущихся частей. В процессе эксплуатации за такими деталями нужен уход, регулировка и замена. Также следует отметить незначительное запаздывание в реакции на изменения показателей сети. Габариты и большой вес являются показателями довольно мощных устройств, которые весьма требовательны к условиям эксплуатации, такие как, температура воздуха в помещении, где находится стабилизатор. Температурный диапазон от -5 до +40 Цельсия.

Ниже указаны диапазоны характеристик электромеханических стабилизаторов разных изготовителей:

240 — 430 (трехфазный)

280 — 430 (трехфазный)

240 — 430 (трехфазный)

240 — 430 (трехфазный)

3. Электронные стабилизаторы напряжения

Приборы данного типа осуществляют входное напряжение ступенчато, их еще называют дискретными. В основе находится автотрансформатор. Вторая составляющая электронных стабилизаторов – реле или полупроводники в виде тиристоров и симисторов. Принцип работы заключается в следующем: каждая обмотка трансформатора добавляет на выходе соответствующее напряжение. Определенная обмотка включается регулировкой входного напряжения реле или электронных ключей. Точность у разных приборов колеблется от 2 до 10%. Причиной таких колебаний кроется в ступенчатом регулировании. Величина колебаний напрямую зависит от количества обмоток.

Читать еще:  Замена звездочки на бензопиле. Устройство, отзывы

Допустим, каждая прибавляет по 17,6 В (точность стабилизатора 8%) при входном напряжении 195 Вт переключаются две обмотки и на выходе получится 230,2 Вт. Данный стабилизатор осуществляет регулировку быстро, но с небольшой погрешностью. Если указано 2%, то мы получим на выходе 221,4 Вт. Но, обмоток уже получается 6, и поэтому регулировка в этом случае происходит дольше.

К тому же стоимость системы повышается за счет большого количества электронных ключей, при этом об увеличении надежности не может быть и речи.

Необходимо понимать, для какого устройства допустима погрешность. Для холодильников, плит, и других приборов с электродвигателем или нагревательным элементом, десятипроцентное отклонение входящего напряжения не отражается на стабильном рабочем режиме. В случае, когда требуется защитить кинотеатр или компьютер, необходимо остановить свой выбор на более точном устройстве.

Благодаря наличию цифрового управления, все соответствующие элементы располагаются на одной микросхеме. Следовательно, происходит уменьшение веса и габаритов прибора. Входное и выходное напряжение отображается на дисплее.

Самый главный плюс – отсутствие механического износа, т.к движущихся деталей нет. От качества тиристоров или симисторов зависит долговечность. Некоторые модели устойчивы к температурам от минус двадцати и ниже.

Явным минусом является чувствительность к коротким замыканиям или большим нагрузкам, которые могут вывести из строя электронные ключи. Поэтому следует выбирать электронный стабилизатор с хорошим запасом мощности.

Стабилизаторы используют в квартирах, на дачах, в коттеджах. Однофазные стабилизаторы используются при напряжении 220В. Мощность таких стабилизаторов от 0,5 до 30 кВт, что позволяет защитить один прибор или всю технику в доме. В сети 380 В возможны сочетания из трехфазных (3-30 кВт и выше) и однофазных стабилизаторов. Такие устройства представляют собой 3 однофазных стабилизатора, которые могут быть расположены под одним корпусом. Техническое решение модели более 100 кВт представляет собой три трансформатора на одном сердечнике. Устройства рассчитаны для защиты отдельных единиц техники, а так же они могут располагаться в загородных домах, офисах, на предприятиях для защиты всей сети.

Похожие статьи

Стабилизатор напряжения: какой выбрать?

Нестабильное напряжение в электросети оказывает пагубное действие на всю технику. Скорее всего, Вы наблюдали ситуацию, когда лампочки мигают и их свет угасает – это прямой сигнал о том, что идет колебание напряжения. Высокие перепады наносят вред оборудованию, уменьшая их производительность на 25%. Экономные лампы при данных условиях «летят» гораздо раньше. В современных мегаполисах, как бы удивительно это не звучало, нестабильность напряжения постоянно присутствует. Согласно статистике, в среднем по России, зарегистрировано 5 заявок в неделю в сервисные центры по причине перегоревших электрических приборов.

В этой статье мы рассмотрим виды стабилизаторов напряжения, потребляемую мощность основных приборов и другую важную информацию, знание которой поможет в выборе стабилизатора напряжения.

Как выбрать стабилизатор напряжения для электроприборов?

В данной теме мы рассмотрим проблему выбора стабилизатора напряжения для основных домашних устройств, подверженных выходу из строя из-за скачков напряжения в электрической сети. Это газовые котлы, компьютеры и оргтехника, телевизоры, холодильники и морозильные камеры. Дадим рекомендации по выбору конкретной модели стабилизатора для соответствующих устройств. Также оценим ряд факторов и характеристик, влияющих на выбор и срок службы стабилизатора напряжения.

Настройка и ремонт

Ремонтом стабилизаторов микросхем никто не занимается по той причине, что это едва ли осуществимо технически, а сами детали стоят сущие копейки. В настройке такой прибор не нуждается, ведь он изначально создаётся под одно конкретное напряжение.

Блоки питания и различные преобразователи напряжения вполне поддаются ремонту. Их стоимость может лежать в пределах от единиц до тысяч долларов, по понятным причинам восстанавливают только дорогие модели.

ЛАТР – прибор не самый дешёвый, но устроен довольно просто. Его ремонт – это по большей части восстановление подгоревших контактов и протяжка различных креплений. В редких случаях, если ЛАТР всё-таки удастся сжечь, то придётся перемотать его обмотку.

Существует широкий выбор регулируемых стабилизаторов напряжения. Некоторые из них громоздкие и справляются с нагрузками в сотни ватт. Другие размером не больше 5 мм, легко помещаются в смартфонах. Понимание того, где, как и какой стабилизатор применить, позволяет использовать их максимально эффективно.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×