Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные свойства бетона

Модуль №1. Физико-механические свойства материалов бетонных и железобетонных конструкций.

В зависимости от величины объемного веса различают бетоны

  • тяжелые (2 200—2 400 кг/м3) и легкие (1 200—1 800 кг/м3).
  • ячеистые бетоны имеют объемный вес от 300 до 1 000 кг/м3.

В зависимости от величины объемного веса бетоны являются теплопроводными («холодными») или малотеплопроводными («теплыми»). Чем больше объемный вес, тем бетон теплопроводней. т. е. «холодней».

Растворы разделяются по виду заполнителя. При применении тяжелого заполнителя, например песка, раствор получается тяжелым, т. е. «холодным», а при легком заполнителе (котельные или металлургические шлаки, легкие горные породы — трепел, пемза, туф) — легким, т. е. «теплым».

Понятие модуля упругости бетона и единицы измерения

В процессе эксплуатации твёрдые тела подвергаются нагружению и начинают деформироваться. Сначала протекающие деформационные изменения являются обратимыми, а их величина от прикладываемого усилия является линейной. Как только нагрузка снимается, изделие полностью восстанавливает первоначальную форму. Для описания протекающих процессов используется закон Гука, согласно которому в качестве коэффициента пропорциональности между абсолютным сжатием либо удлинением и прикладываемым усилием используется модуль упругости.

Определение данного показателя звучит следующим образом: модуль упругости – коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной деформацией. Измеряется в кгс/см² (Н/м², Па). Называют модулем Юнга.

Как только нагрузка превысит определённый уровень, начинается фаза необратимых изменений. Деформативность становится неупругой. Сдвиг увеличивается без дальнейшего приложения нагрузки. В зоне ползучести внутренние связи начинают разрушаться, и бетонная конструкция теряет прочность.

ФОТО: gidrocor.ru При превышении определённого значения бетонная конструкция начинает разрушаться

Том I. Сопротивление железобетона

Сохранение ведущей роли бетона и железобетона в различных областях строительства требует постоянного совершенствования методов проектирования железобетонных конструкций.

Повышению качества проектирования таких конструкций способствовали многочисленные исследования, выполненные в последние десятилетия, и сопутствовавший им пересмотр норм проектирования. Однако к середине восьмидесятых годов какие-либо пособия, отражающие в достаточной мере современное состояние строительной науки и учитывающие требования действующих норм, практически отсутствовали. Этот пробел, по замыслу авторов, и должна была восполнить капитальная монография “Проектирование железобетонных конструкций. Справочное пособие”, вышедшая двумя изданиями — в 1985 и 1990 годах и, с тех пор, продолжающая оставаться настольной книгой инженерно-технических работников проектных и строительных организаций и студентов строительных вузов.

В первом издании приведены были подробные данные о материалах для железобетонных конструкций и рекомендации по их выбору, а также указания по конструированию. Значительное место отведено было расчету по предельным состояниям. Освещались вопросы проектирования несущих конструкций. При решении ряда задач рассматривались вопросы, связанные с учетом ползучести бетона, а также с расчетом по методу предельного равновесия с учетом ограниченной пластичности материалов.

Структура второго издания, в целом, осталась прежней. Сохранились и все вышеуказанные материалы. Дополнительно включены были материалы по физико-механическим свойствам бетона и арматурных сталей, несколько расширена глава по проектированию несущих конструкций за счет свайных фундаментов, развит раздел по расчету рам на основе реальных диаграмм состояния бетона.

Данное (т.е. третье) издание существенно отличается от предыдущих. Прежде всего (в связи с исключением и заменой целого ряда материалов) изменен состав авторов. Поскольку издание носит более общий характер (является по сравнению с предыдущими менее специализированным) и, следовательно, рассчитано на предельно широкий круг читателей, сочтено было целесообразным изменить и название работы. Заметно изменена структура работы. Так, в частности, изъята первая глава, содержащая целый ряд разделов, не отвечающих современным требованиям. Введена отдельная глава по экспериментальным основам сопротивления железобетона. Расширены и усовершенствованы материалы по физико-механическим свойствам бетона, обновлены многие методы расчета и расширен круг решаемых на их основе задач. Расчет по предельным состояниям распространен и на сборио-монолитные конструкции.

Издание состоит из двух томов. В первом изложены данные по свойствам материалов, основы сопротивления железобетона, вопросы расчета железобетонных элементов, указания по конструированию. Второй том посвящен расчету и конструированию несущих железобетонных конструкций.

В подготовке рукописи к изданию активное участие принимали И. Н. Ткаченко, А. И. Кисиль и Н. С. Клепикова. Им за это искренняя благодарность.

МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

НАПРЯЖЕНИЯ В БЕТОНЕ И АРМАТУРЕ ОТ УСАДКИ И ПОЛЗУЧЕСТИ БЕТОНА

Удобоукладываемость бетонной смеси

Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси — подвижность и жесткость.

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков.
Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность

Факторы, влияющие на модуль Юнга

Модуль Юнга – это основная характеристика бетона, определяющая его прочность. Благодаря величине проектировщики проводят расчёты устойчивости материала к различным видам нагрузок. На показатель влияют многие факторы:

  • качество и количество заполнителей;
  • класс бетона;
  • влажность и температура воздуха;
  • время воздействия нагрузочных факторов;
  • армирование.
Читать еще:  Дюбеля: как правильно с ними работать?

ФОТО: dostroy.com Модуль упругости позволяет проектировщикам правильно рассчитывать нагрузку

Качество и количество заполнителей

Качество бетона зависит от его заполнителей. Если компоненты имеют низкую плотность, соответственно, модуль Юнга будет небольшим. Упругость материала возрастает в несколько раз, если применяются тяжёлые наполнители.

ФОТО: russkaya-banja.ru Крупные компоненты увеличивают характеристики упругости

ФОТО: ivdon.ru График зависимости предела прочности материала от цементного камня

Класс материала

На коэффициент влияет и класс бетона: чем он ниже, тем меньше значение модуля упругости. Например:

  • модуль упругости у В10 соответствует значению 19;
  • В15 – 24;
  • В-20 – 27.5;
  • В25 – 30;
  • показатель у В30 возрастает до значения 32,5.

ФОТО: buildingclub.ru Зависимость от класса бетона

Как влияют на показатель влажность и температурные значения

На рост деформаций и уменьшение упругих свойств материала влияют:

  • повышение температуры воздуха;
  • увеличение солнечной активности.

Под воздействием негативных факторов окружающей среды внутренняя энергия материала увеличивается, это приводит к линейному расширению бетона и соответственно, к увеличению пластичности.

Важно! Понижение температурных колебаний от 20 °C не учитывают в расчётах.

На ползучесть материала оказывает влажность, приводящая к изменению упругих характеристик. Чем выше содержание водяных паров, тем ниже коэффициент.

ФОТО: betonpro100.ru Влияние влажности на ползучесть бетона

Время воздействия нагрузки и условия твердения смеси

На показатель упругости влияет время воздействия нагрузки:

  • при мгновенном усилии на бетонную конструкцию деформативность прямо пропорциональна величине внешней нагрузке;
  • при длительном воздействии значения коэффициента уменьшаются.

Во время проведения исследований было отмечено, если бетон твердеет естественным способом, модуль упругости у него выше в отличие от пропаривания материала в различных условиях. Это объясняется тем, что при использовании внешних условий в бетоне образуются пустоты и поры в большом количестве, ухудшающие его упругие свойства.

ФОТО: udarnik.spb.ru Зависимость модулей упругости от разных факторов

Возраст бетона и армирование конструкции

Прочность бетона находится в прямой зависимости от его возраста, со временем показатель только увеличивается. Ещё один фактор, положительно влияющий на модуль упругости бетона, – армирование, которое препятствует деформации материала.

ФОТО: 63-ds.netsamara.ru Для конструкций, которые будут эксплуатироваться под большими нагрузками, необходима укладка металлической решётки

Определение значения модуля упругости

Имеется железобетонная прямоугольная плита перекрытия — шарнирно опертая бесконсольная балка размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (начальный модуль упругости Еb = 245000 кгс/см 2 ; Rb,ser (Rb,n) = 112 кгс/см 2 , Rb = 85 кгс/см 2 ); растянутая арматура класса А400 (Es= 2·10 6 кгс/см 2 ) с площадью поперечного сечения As = 7.69 cм 2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кг/см, сумма постоянных и длительных нагрузок ql = 6.5 кгс/см

1. Сначала выясним, какими будут параметры сечения при расчетном модуле упругости Еb1. Согласно формулы (324.3) и таблицы 2, при классе бетона В15 и при влажности 40-75%:

Eb1 = 245000/(1 + 3.4) = 55681 кгс/см 2

2. Тогда высоту сжатой части приведенного сечения посредине балки можно найти, решив следующее уравнение:

у 3 = 3As(ho — y) 2 Es/bEb1 (321.2.4)

Решение этого уравнения для рассматриваемой плиты даст уl/2 = 8.61 см.

Тогда приведенный момент сопротивления при такой высоте сжатой зоны сечения составит:

W = 2by 2 /3 = 2·100·8.61 2 /3 = 4942.14 см 3

3. Определим значение максимальных нормальных напряжений. Так как увеличение деформаций следует учитывать только при действии постоянных и длительных нагрузок, то значение момента от таких нагрузок составит:

σ = M/W = qll 2 /8W = 6.5·560 2 /(8·4942.14) = 51.56 кгс/см 2 2 (321.3.1)

Это означает, что для дальнейших расчетов плиты на действие длительных нагрузок можно использовать полученное значение модуля упругости бетона без каких-либо дополнительных поправок.

4. Расчетный момент инерции составит

Ip = W·y = 4942.14·8.61 = 42551.8 см 4 (321.5)

5. Значение прогиба при действии постоянных и длительных нагрузок составит

f = k5ql 4 /384Eb1Ip = 0.93·5·6.5·560 4 /(384·55681·42551.8) = 3.27 см (321.6)

где k = 0.93 — коэффициент, учитывающий изменение высоты сжатой зоны поперечного сечения по длине балки. На первый взгляд это кажется странным, ведь когда мы определяли прогиб по начальному модулю упругости бетона и использовали коэффициент k = 0.86, то пригиб составлял 3.065 см, т.е. при использовании коэффициента k = 0.93 прогиб был бы даже больше и составлял 3.31 см. Однако ничего странного в этом нет. Объясню, почему.

При определении прогиба по начальному модулю упругости мы искусственно занизили значение высоты сжатой зоны из-за нарастания пластических деформаций в результате превышения расчетного сопротивления. В данном же случае уменьшение модуля упругости бетона означает увеличение высоты сжатой зоны, а кроме того, значение нормальных напряжений, как показал расчет, не превышает 0.6Rb,n.

В связи с этим разницу при определении приблизительного прогиба по начальному и расчетному модулям упругости бетона можно считать не существенной. Т.е. при определении приблизительного значения прогиба расчет можно выполнять как по начальному значению модуля упругости бетона, так и с учетом его изменения в результате действия длительной нагрузки. Вот в в принципе и все.

А еще у Вас есть уникальная возможность помочь автору материально. После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Читать еще:  Печь для казана из автомобильных дисков своими руками

Для терминалов номер Яндекс Кошелька 410012390761783

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 0121 5641

Кошелек webmoney: R158114101090

Или: Z166164591614

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Что такое подвижность пластичной смеси бетона? Какие факторы на нее влияют?

Консистенция бетонной смеси меняется от жесткой до легко подвижной. В соответствии с ГОСТом 7473-2010 она обозначается буквой П и цифрами 1-5. Чем больше цифра, тем выше текучесть пластичной массы. Бетоны П1-П3 относятся к материалам малой подвижности, П4-П5 – к очень подвижным.

Параметры, увеличивающие и снижающие текучесть смеси:

  • Самопроизвольному заполнению опалубки препятствует сцепление частиц наполнителя между собой и со стенками формы. Гравий с гладкой поверхностью снижает трение смеси с поверхностью опалубки и повышает подвижность раствора. Однако прочность бетонных и железобетонных элементов на гравии значительно ниже, чем прочность конструкций, изготовленных с применением щебня.
  • Текучесть снижают глинистые и пылевидные включения в заполнителях. К тому же они становятся причиной появления дефектов в готовом отвердевшем продукте.
  • Подвижность повышают путем увеличения количества воды и цемента, добавления пластификаторов. Увеличение объема цементного теста и уменьшение количества заполнителей при неизменном водоцементном соотношении приводит к повышению текучести смеси с сохранением прочности затвердевшего продукта.
  • На показатель текучести влияет тип используемого цемента. Бетонные смеси с пуццолановым портландцементом, особенно если они имеют кремнеземистую присадку, показывают большую осадку конуса, по сравнению с осадкой конуса бетона, изготовленного на обычном портландцементе.
  • Недостаточную подвижность компенсируют штыкованием и вибрированием.

У смесей со слишком высокой текучестью тоже есть недостатки. Слишком подвижный бетон, уложенный на щебневую подушку, не держится на ее поверхности, а уходит вглубь. При заливке в дощатую опалубку высокоподвижная смесь начнет выливаться сквозь щели.

Состав и свойства

Железобетон состоит из железа и бетона. Однако эти две его составляющиеся распределены неравномерно.

Главным образом каркас должен размещаться на участках, подвергаемых максимальному растяжению. Соответственно, перед изготовлением какой-либо продукции – фундамент, свая, плита, колонна, необходимо рассчитать нагрузку на будущую конструкцию и ее распределение.

Виды арматуры

По назначению

По назначению арматуру разделит на следующие группы:

  • рабочая арматура;
  • воспринимающая нагрузку, то есть, подвергающаяся наибольшему растяжению;
  • распределительная, позволяющая передать часть нагрузки равномерно по всей арматуре.

Кроме того, устройство каркаса должно учитывать температурные, усадочные, транспортные и другие нагрузки.

По технологии изготовления

По технологии изготовления используют следующую классификацию:

  • стержневая – к ней относится арматура любого диаметра и вида – собственно стержень, прутки, мотки, которую допускается подвергать упрочнению в холодном или нагретом состоянии. Изготавливается горячей прокаткой;
  • арматурная проволока – производится волочением в холодном состоянии. Используется для нее низкоуглеродистая сталь – B-1, или прочная высокоуглеродистая класса В-П. Последнюю обычно применяют для получения блоков напряженного бетона. Оба вида арматуры могут быть гладкими или рифлеными.

Также может использоваться и канатная проволока, свитая из 2 или 3 прядей.

Особая категория

В особую категорию стоит выделить сборные конструкции из напряженного бетона. Понятно, что для максимально качественного взаимодействия материалов друг с другом сталь должна быть плотно охвачена бетоном. Это достигается за счет уплотнения смеси при заливке.

Но ведь коэффициент растяжения у стали и камня разный, и при возникновении нагрузки, сталь, растягиваясь, волей-неволей растягивает и бетон. Камень при этом трескается. Явление это закономерное, и если трещины не превосходят стандартные размеры, недостатком не считаются.

Однако стойкость к растяжению можно повысить, если устанавливать арматуру растянутую. Для этого в форму стержни и прутки закладываются под соответствующей нагрузкой – механической, электротермической, электромеханической. Когда бетон отвердеет, нагрузка снимается.

Сталь при этом в некоторой степени сжимается, сжимая заодно и схватившийся бетон. В результате, когда конструкция попадает под настоящую расчетную нагрузку, уже адаптированный бетон не трескается. Такой материал используют на объектах, где от железобетона требуется особо высокая прочность на сжатие и стойкость.

Виды бетона

Химические и многие физические характеристики железобетона определяет марка используемой смеси. Для заливки применяют практически все существующие виды.

По нормативной плотности

По нормативной плотности выделяют следующий железобетон.

  • Особо тяжелый бетон с плотностью более 2500 кг/куб м. Как правило, используется для фундамента, опорных колонн, стенок бункеров и так далее.
  • Тяжелый с плотностью 2200 кг/куб.м. Это обычный материал для несущих стен в промышленных постройках, многоэтажных зданиях и так далее.
  • Бетон с плотностью выше 1800 кг/куб. м., но ниже 2200 кг/куб. м. называют мелкозернистым или облегченным.
  • Легкий бетон обладает плотностью не более 800 кг/ куб. м. и сверхлегкий – менее 600 кг/куб м. Сюда относятся смеси с легкими наполнителями – опилкобетон, например, а также пористые материалы.
Читать еще:  Виды арматуры: классификация по основным признакам

По типу заполнителя

По типу заполнителя выделяют самые разные виды:

  • с плотными заполнителями, например, морозостойкий бетон;
  • с пористыми;
  • с жаростойкими – металлургический шлак, например;
  • специальные, для повышения биологической стойкости и прочее.

По величине зерна

По величине зерна выделяют такие виды:

  • крупнозернистый с крупным наполнителем;
  • крупнозернистый с мелким наполнителем – плотность такого всегда выше;
  • мелкозернистая смесь с мелким заполнителем.

По условиям твердения

Различают материал и по условиям твердения.

  • Бетон естественного твердения – это, как правило, монолитный. В частном строительстве он встречается чаще всего.
  • Материал, твердеющий в условиях термовлажной обработки – сборные конструкции, изготавливаемые в заводских условиях, где срок твердения сокращен до минимума.
  • Бетон, получаемый в автоклавах.

Бетон имеет неоднородный состав, что одновременно является и достоинством, и недостатком материала. В целом его стойкость к сжатию становится выше, при как можно более однородном составе.

И бетон, и арматура подбирают для каждого объекта с учетом всех возможных нагрузок.

А теперь поговорим про объемный и удельный вес (кг/м3) бетона и железобетона, его плотность,

Стойкость бетона к внешним воздействиям

Коррозия бетона

Коррозия бетона (разрушение цементного камня) происходит вследствие многих факторов:

  • влияния окружающей среды,
  • механических воздействий,
  • проникновения воды,
  • изменения температур (замораживание/оттаивание, нагрев/резкое охлаждение).

Нарушение структуры цементного камня сопровождается понижением его сцепления с армирующими элементами, повышением водопроницаемости и, как результат, снижением прочности. Для повышения коррозийной стойкости бетона рекомендуются такие меры:

  • использование специальных кислотостойких, глиноземистых или пуццолановых цементов;
  • введение в смеси гидрофобизирующих, жаростойких или морозостойких добавок;
  • увеличение плотности бетона. Большое влияние на стойкость бетона, кроме состава смеси и соотношения компонентов, оказывает технология приготовления и доставки, укладки и последующего ухода. Виброперемешивание смеси увеличивают активность цемента и позволяют получить тесто с макрооднородной структурой, а транспортировка в миксерах – избежать его расслоения при доставке на объект. Эффект от виброуплотнения при укладке теста объясняется вытеснением пузырьков воздуха: в неуплотненной смеси он может достигать 45%. Удаление воздуха обеспечивает защиту бетона от коррозии, увеличение прочности, морозо-, жаростойкости, а также снижает водопроницаемость бетона.

Морозостойкость бетона

Воздействие на бетон поочередного замораживания/оттаивания приводит к его растрескиванию. Объясняется это тем, что в замороженном состоянии влага, находящаяся в порах материала, превращается в лед, а значит, увеличивается в объеме (до 10%). Это приводит к повышенному внутреннему напряжению бетона, а в результате и к его растрескиванию и разрушению.

Морозостойкость бетона тем ниже, чем больше доступ к проникновению влаги: объем пор, в которых может накапливаться вода (макропористость) и уровень капиллярной пористости.

Повышение морозостойкости бетона происходит за счет уменьшения показателей макро и микропористости, а также введением гидрофобных воздухововлекающих добавок. С их помощью в бетоне образуются резервные поры, не заполняемые водой в обычных условиях. При замерзании воды, уже попавшей внутрь бетона, часть ее перемещается в эти поры, тем самым снимая внутреннее давление. Использование глиноземистых цементов также увеличивает морозостойкость материала.

Так как при возведении объектов предъявляются различные требования к свойствам бетона по морозоустойчивости, производится бетон с классом устойчивости к циклам замораживания/оттаивания от F25 до F1000. Для гидротехнических сооружений необходима марка бетона по морозостойкости от F200, а для возводимых в зонах с суровым климатом – от F800 (спецификация производится, исходя из среднесуточной температуры для данного региона).

Водонепроницаемость бетона

Разрушение бетона под воздействием жидких сред происходит не только при отрицательных температурах. Влага имеет свойство вымывать легкорастворимые компоненты из любого вещества, а один из компонентов, при затворении бетонного теста, гашеная известь (гидрат окиси кальция) – водорастворимое вещество. Его вымывание приводит к нарушению структуры и разрушению бетонных блоков и фундаментов. Кроме того, находящиеся в воде кислотные компоненты также оказывают неблагоприятное влияние на состояние материала. На сегодняшний день существуют различные способы защиты бетона от разрушения вследствие воздействия влаги.

Избежать негативного влияния воды можно использованием пуццоланового или сульфатостойкого портландцемента, введением в раствор гидрофобных добавок в бетон для водонепроницаемости, а также применением специальных пленкообразующих покрытий, препятствующих проникновению влаги и уплотняющих добавок. По параметру водонепроницаемости бетон подразделяется на классы (марки). Существуют марки бетона по водонепроницаемости (характеризуется односторонним гидростатическим давлением, измеряется в кгс/см²) от W2 до W20.

Устойчивость к воздействию высоких температур

Если возводимые бетонные сооружения или отдельные изделия будут эксплуатироваться при постоянных высоких температурах, то необходимо выбирать жаростойкий бетон соответствующего класса, так как обычный под воздействием жара теряет прочность и дает усадку вследствие потери цеолитной, абсорбционной и кристаллизационной воды. Это приводит к растрескиванию, частичному, а затем и полному разрушению бетона. Жаростойкий бетон обозначается BR и подразделяется в соответствии с предельно допустимой температурой применения на классы от И3 до И18 (или U3-U18).

Для класса И3 предельно допустимая температура составляет +300°С, а для И18 — +1800°С.

Кроме того существует подразделение на марки по термостойкости:

  • для водных теплосмен — Т(1)5, Т(1)10, Т(1)15, Т(1)20, Т(1)30, Т(1)40;
  • для воздушных теплосмен — Т(2)10, Т(2)15, Т(2)20, Т(2)25.

Последний параметр обозначает способность выдерживать смены температур без деформаций и снижения прочности.

Полезное по теме:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector