9 Тугоплавкие и благородные металлы и сплавы - Домашний уют - журнал
Palitra21.ru

Домашний уют — журнал
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сайт для сварщиков

Каждый металл и их сплавы имеют различные свойства. Одно из таких свойств — температура плавления. Каждый металл плавится при разной температуре. Все что нужно для перевода вещества из твёрдого состояния в жидкое — источник тепла, который будет разогревать металл до определенной температуры.

Так как у каждого металла температура плавления различная, можно определить менее устойчивый металл к температуре и более. Так самый легкоплавкий металл — ртуть, он готов перейти в жидкое состоянии при температуре равно 39 градусов по цельсию. А вот вольфрам( из чего собственно и сделаны вольфрамовые электроды для аргоновой сварки), расплавится только по достижению температуры в 3422 градусов цельсии.

Что касается сплавов, таких как сталь и прочих, определить температуру, при которой те будут плавиться, довольно сложно. Вся сложность в их составе… Так как состав разный, то и температура плавления различная. Как правило, для сплавов указывается диапазон температур, при которых он будет плавиться. Вообще, температура плавления металлов интересная тема.

Физико-механические свойства

Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:

  • Подгруппа 5A – тантал, ванадий и ниобий.
  • Подгруппа 6A – вольфрам, хром и молибден.

Наименьшей плотностью обладает ванадий – 6100 кгм3, наибольшей вольфрам – 19300 кгм3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.

Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.

Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.

Коррозионная стойкость

Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.

Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.

Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.

Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.

Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.

Хладноломкость

Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.

Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.

9. Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Читать еще:  Печи из металла — преимущества, недостатки и не только.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

Молибден и его сплавы являются наверное самыми частоиспользуемыми из всех тугоплавких. В промышленности часто используются сплавы легированные цирконием, бором, титаном, ниобием: сплавы ЦМ3, ЦМ6, ЦМ2А, ВМ3

Ниобий и его сплавы, благодаря высокой коррозионной стойкости, высокой жаропрочности (до 1300°C) и хорошей работе при нейтронном облучении, нашли широкое применение при изготовлении изделий атомной промышленности. В качестве примера сплавов на основе ниобия стоит назвать сплавы ВН2, ВН2А, ВН3.

Титан не самый доступный металл, он сложен в производстве и тяжело обрабатывается. Эти недостатки искупаются его уникальными свойствами титановых сплавов: высокой прочностью, малым удельным весом, стойкостью к высоким температурам и агрессивным средам. Эти материалы плохо поддаются механической обработке, но зато их свойства можно улучшить с помощью термической обработки.

Легирование алюминием и небольшими количествами других металлов позволяет повысить прочность и жаростойкость. Для улучшения износостойкости в материал добавляют азот или цементируют его.

Область применения титановых сплавов

Металлические сплавы на основе титана используются в следующих областях:

      • аэрокосмическая;
      • химическая;
      • атомная;
      • криогенная;
      • судостроительная;
      • протезирование.

Тантал

Металл, в свободном виде и при обычных условиях покрытый оксидной пленкой. Обладает набором физических свойств, которые позволяют ему быть широко распространенным и очень важным для человека. Его основные характеристики следующие:

  1. При температуре свыше 1000 о С становится сверхпроводником.
  2. Это наиболее тугоплавкий металл после вольфрама и рения. Температура плавления составляет 3017 о С.
  3. Прекрасно поглощает газы.
  4. С ним легко работать, так как он прокатывается в пласты, фольгу и проволоку без особого труда.
  5. Обладает хорошей твердостью и не хрупкий, сохраняет пластичность.
  6. Очень устойчив к воздействию химических агентов (не растворяется даже в царской водке).

Благодаря таким характеристикам сумел завоевать популярность как основа для многих жаропрочных и кислотоустойчивых, антикоррозионных сплавов. Его многочисленные соединения находят применение в ядерной физике, электронике, приборах вычислительного плана. Используются как сверхпроводники. Раньше тантал использовался как элемент в лампах накаливания. Сейчас его место занял вольфрам.

Знакомство с нежелезными металлами

Список цветных металлов обширен. Руд цветных металлов в разы больше.

Важными рудами на медь являются халькозин, борнит, халькопирит. Встречается и самородная медь, но редко. Про медь читайте здесь.

Добычу медных руд производят:

  • США;
  • Канада;
  • Чили;
  • Перу;
  • Замбия;
  • Россия.

Алюминий

Главное сырье на алюминий — бокситы. Руды бокситов — диаспор (его ювелирная разновидность султанит подробно описана здесь), гетит, бемит, каолинит. Подробнее про этот металл читайте на этой странице.

Российские месторождения бокситов находятся в областях:

  • Архангельской;
  • Белгородской;
  • Свердловской;
  • Челябинской.

Богатые запасы бокситов расположены в Корее, Венгрии, Югославии, Китае.

Значительные запасы бокситовых руд в Австралии, Бразилии, США, Франции.

Свинец

Главная руда на свинец — галенит, кроме него церуссит и англезит.

Галенит образует полиметаллические руды со сфалеритом и халькопиритом.

48 стран мира могут добывать на своей территории свинец.

Основная цинковая руда — сфалерит. Это сульфид цинка, и в природе его естественными спутниками являются галенит и халькопирит.

Главные мировые запасы цинка находятся в Канаде, немногим отстают Китай, Австралия, США.

В России цинк добывают на Каменном Поясе. Есть месторождения в Сибири и Приморье.

Магний

Этого цветного металла в земной коре около 2%.

Руд, содержащих магний, около 60, но для промышленной добычи используют:

  • доломит;
  • магнезит;
  • брусит;
  • карналлит;
  • морская вода.

Каждая страна обладает запасами магния. Магнезит находят в США, Испании, Австралии, Канаде, Югославии, Греции. Карналлит используют в странах СНГ.

Огромные запасы магния находятся в воде залива Кара-Богаз-Гол.

Никель

Никелевые руды могут быть сульфидные и силикатные. Подробнее о металле читайте здесь.

  • халькопирит;
  • пирротин;
  • магнетит;
  • пентландит.

Силикатные никелевые руды:

  • гарниерит;
  • гетит;
  • ревдинскит;
  • контронит;
  • асболан.

Кобальт

В природе немного кобальтсодержащих руд, особенно пригодных для промышленного использования. Среди них кобальтин, скуттерудит, линнеит, шмальтин, эритрин.

По минеральному и химическому составу кобальтовые руды делятся на сульфидные, арсенидные, оксидные. В основном все руды комплексные, собственно кобальтовые встречаются только среди мышьяковых (арсенидных) руд.

Читать еще:  Жаропрочные, жаростойкие и композиционные материалы

За рубежом кобальтосодержащие месторождения находятся в Канаде, Финляндии, Австралии, Африке.

В России — на Урале, в Красноярском крае, на Кольском полуострове.

Основные добытчики кобальта — Заир и Замбия.

Олово

Главные минералы для добычи олова — касситерит и станнин. Половина добычи олова приходится на месторождения Юго-Восточной Азии. Подробнее про олово написано здесь.

Немного отстает Китай, за ним идут Индонезия, Малайзия, Бразилия, Россия.

Молибден

Основной рудный минерал на молибден — молибденит. В природе «дружит» с сульфидами меди и касситеритом.

В добыче металла первенствуют США, следом идут Чили и Китай, на третьем месте — Канада.

В России тоже есть молибденовые руды, в Забайкалье, на Северном Кавказе, на юге Западной Сибири.

Вольфрам

Основные руды на вольфрам — вольфрамит и шеелит.

Китаю повезло, у него более 40% мировых запасов вольфрамита. Россия отстала не сильно, у нас шеелит есть на Кавказе, в Забайкалье, на Чукотке.

Есть месторождения в Германии, Канаде, Турции, США.

Висмут

Существует самородный висмут. В Боливии и Австралии его добывают вместе с висмутином. Подробнее о нём читайте здесь.

Боливия единственная страна, где металл добывают прямо из висмутовой руды. В основном висмут извлекают из полиметаллических руд.

Мировые лидеры по запасам:

  • Перу;
  • Мексика;
  • Китай;
  • Австралия;
  • Канада.

Месторождения висмутовых руд редки и невелики по масштабам.

Сурьма

Главный источник сурьмы — антимонит. Кроме него, рудой на сурьму могут служить бертьерит, джемсонит, ливингстонит, стибиконит.

Австралия, Россия и Китай обладают залежами антимонита, остальные страны могут только облизываться на такое богатство. Среди завидующих США, КНР, ЮАР. У них есть полиметаллические месторождения.

Ртуть

Киноварь — единственный минерал для качественной добычи ртути.

Основные производители жидкого металла:

  • Испания;
  • Китай;
  • Алжир;
  • Мексика.

Россия обладает небольшими запасами киновари на Чукотке, Алтае, Камчатке.

У Америки с этим и того хуже — маленький рудничок в Неваде.

А вот на юге Испании известно ртуть добывают почти две тысячи лет.

Применение

Тугоплавкие металлы используются в качестве источников света, деталей, смазочных материалов, в ядерной промышленности в качестве АРК, в качестве катализатора. Из-за того, что они имеют высокие температуры плавления, они никогда не используются в качестве материала для выплавки на открытом месте. В порошкообразном виде материал уплотняют с помощью плавильных печей. Тугоплавкие металлы можно переработать в проволоку, слиток, арматуру, жесть или фольгу.

Вольфрам и его сплавы

Вольфрам был найден в 1781 г. Шведским химиком Карлом Вильгельмом Шееле. Вольфрам имеет самую высокую температуру плавления среди всех металлов — 3422 °C (6170 °F)

Рений используется в сплавах с вольфрамом в концентрации до 22 %, что позволяет повысить тугоплавкость и устойчивость к коррозии. Торий применяется в качестве легирующего компонента вольфрама. Благодаря этому повышается износостойкость материалов. В порошковой металлургии компоненты могут быть использованы для спекания и последующего применения. Для получения тяжёлых сплавов вольфрама применяются никель и железо или никель и медь. Содержание вольфрама в данных сплавах как правило не превышает 90 %. Смешивание легирующего материала с ним низкое даже при спекании [9] .

Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь [10] . Нити накаливания, состоящие из вольфрама, находят своё применение в быту и в приборостроении. Лампы более эффективно преобразуют электроэнергию в свет с повышением температуры [9] . В вольфрамовой газодуговой сварке ( англ. ) оборудование используется постоянно, без плавления электрода. Высокая температура плавления вольфрама позволяет ему быть использованным при сварке без затрат [11] [12] . Высокая плотность и твёрдость позволяют вольфраму быть использованным в артиллерийских снарядах [13] . Его высокая температура плавления применяется при строении ракетных сопел, примером может служить ракета «Поларис» [14] . Иногда он находит своё применение благодаря своей плотности. Например, он находит своё применение в производстве клюшек для гольфа [15] [16] . В таких деталях применение не ограничивается вольфрамом, так как более дорогой осмий тоже может быть использован.

Читать еще:  НАПЛАВКА МЕДИ И БРОНЗ НА СТАЛИ РАЗЛИЧНЫХ КЛАССОВ

Сплавы молибдена

Широкое применение находят сплавы молибдена. Наиболее часто используемый сплав — титан-цирконий-молибден — содержит в себе 0,5 % титана, 0,08 % циркония и остальное молибден. Сплав обладает повышенной прочностью при высоких температурах. Рабочая температура для сплава — 1060 °C. Высокое сопротивление сплава вольфрам-молибден (Mo 70 %, W 30 %) делает его идеальным материалом для отливки деталей из цинка, например, клапанов [17] .

Молибден используется в ртутных герконовых реле, так как ртуть не формирует амальгамы с молибденом [18] [19] .

Молибден является самым часто используемым тугоплавким металлом. Наиболее важным является его использование в качестве усилителя сплавов стали. Применяется при изготовлении трубопроводов вместе с нержавеющей сталью. Высокая температура плавления молибдена, его сопротивляемость к износу и низкий коэффициент трения делают его очень полезным материалом для легирования. Его прекрасные показатели трения приводят его к использованию в качестве смазки где требуется надежность и производительность. Применяется при производстве ШРУСов в автомобилестроении. Большие месторождения молибдена находятся в Китае, США, Чили и Канаде [20] [21] [22] [23] .

Сплавы ниобия

Ниобий почти всегда находится вместе с танталом; ниобий был назван в честь Ниобы, дочери Тантала в греческой мифологии. Ниобий находит множество путей для применения, некоторые он разделяет с тугоплавкими металлами. Его уникальность заключается в том, что он может быть разработан путём отжига для того, чтобы достичь широкого спектра показателей твёрдости и упругости; его показатель плотности самый малый по сравнению с остальными металлами данной группы. Он может применяться в электролитических конденсаторах и является самым частым металлом в суперпроводниковых сплавах. Ниобий может применяться в газовых турбинах воздушного судна, в электронных лампах и ядерных реакторах.

Сплав ниобия C103, который состоит из 89 % ниобия, 10 % гафния и 1 % титана, находит своё применение при создании сопел в жидкостных ракетных двигателях, например таких как Apollo CSM ( англ. ) [24] . Применявшийся сплав не позволяет ниобию окисляться, так как реакция происходит при температуре от 400 °C [24] .

Тантал

Тантал является самым стойким к коррозии металлом из всех тугоплавких металлов.

Важное свойство тантала было выявлено благодаря его применению в медицине — он способен выдерживать кислую среду (организма). Иногда он используется в электролитических конденсаторах. Применяется в конденсаторах сотовых телефонов и компьютера.

Сплавы рения

Рений является самым последним открытым тугоплавким элементом из всей группы. Он находится в низких концентрациях в рудах других металлов данной группы — платины или меди. Может применяться в качестве легирующего компонента с другими металлами и придает сплавам хорошие характеристики — ковкость и увеличивает предел прочности. Сплавы с рением могут применяться в компонентах электронных приборов, гироскопах и ядерных реакторах. Самое главное применение находит в качестве катализатора. Может применяться при алкилировании, деалкилировании, гидрогенизации и окислении. Его столь редкое присутствие в природе делает его самым дорогим из всех тугоплавких металлов [25] .

Общие свойства тугоплавких металлов

Тугоплавкие металлы и их сплавы привлекают внимание исследователей из-за их необычных свойств и будущих перспектив в применении.

Физические свойства тугоплавких металлов, таких как молибден, тантал и вольфрам, их показатели твёрдости и стабильность при высоких температурах делает их используемым материалом для горячей металлообработки материалов как в вакууме, так и без него. Многие детали основаны на их уникальных свойствах: например, вольфрамовые нити накаливания способны выдерживать температуры вплоть до 3073 K.

Однако, их сопротивляемость к окислению вплоть до 500 °C делает их одним из главных недостатков этой группы. Контакт с воздухом может существенно повлиять на их высокотемпературные характеристики. Именно поэтому их используют в материалах, в которых они изолированы от кислорода (например лампочка).

Сплавы тугоплавких металлов — молибдена, тантала и вольфрама — применяются в деталях космических ядерных технологий. Эти компоненты были специально созданы в качестве материала способного выдержать высокие температуры (от 1350 K до 1900 K). Как было указано выше, они не должны контактировать с кислородом.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector