Электрохимическая защита технологических трубопроводов - Домашний уют - журнал
Palitra21.ru

Домашний уют — журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрохимическая защита технологических трубопроводов

Электрохимическая защита технологических трубопроводов

При укладке в траншею изолированного трубопровода и его последующей засыпке изоляционное покрытие может быть повреждено, а в процессе эксплуатации трубопровода оно постепенно стареет (теряет свои диэлектрические свойства, водоустойчивость, адгезию). Поэтому при всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты (ЭХЗ) независимо от коррозионной активности грунта.

К средствам ЭХЗ относятся катодная, протекторная и электродренажная защиты.

Защита от почвенной коррозии осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Электрохимическая защита

Достаточно результативный способ защиты металлоконструкций от электрохимической коррозии. Иногда воссоздать лакокрасочную оболочку или защитное оберточное покрытие просто невозможно. Вот в таких случаях и уместно применение электрохимической защиты.

Восстановление покрытия трубопровода, расположенного под землей, или днища морского судна – процесс достаточно трудоемкий и дорогой, а в некоторых случаях и невозможный. Благодаря электрохимической защите изделие будет надежно защищено от коррозии: покрытия подземных трубопроводов, днищ судов, всевозможных резервуаров не будут разрушаться.

  • Используется метод в ситуациях, когда потенциал свободной коррозии пребывает в области усиленного распада основного металла или перепассивации. То есть, когда металлоконструкция интенсивно разрушается.
  • При электрохимической защите к изделию из металла подключают постоянный электрический ток. Благодаря ему на поверхности металлической конструкции образуется катодная поляризация электродов микрогальванических пар и анодные области становятся катодными. А вследствие негативного влияния коррозии разрушается не металл, а анод.
  • Электрохимическая защита может быть анодной или катодной: это будет зависеть от того, в какую сторону сдвинется потенциал металла (в положительную или в отрицательную).

Подверженность коррозии магистральных трубопроводных сетей

Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.

Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.

Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.

Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:

  1. От источников постоянного тока возникновение блуждающих токов.
  2. Воздействие микроорганизмов.
  3. Созданное напряжение провоцирует растрескивание металла.
  4. Хранение отходов.
  5. Соленые почвы.
  6. Температура транспортируемого вещества выше 300 °С.
  7. Углекислотная коррозия нефтепровода.

Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла. В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя. Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Читать еще:  Какую проводку лучше использовать – медную или алюминиевую

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Примеры электрохимической защиты от коррозии трубопроводов на выставке

С одной стороны, поиск профессиональных контактов и налаживание коммуникаций в профессиональной среде может оказаться и непростой задачей, но с другой – сегодня существуют все возможности для максимального упрощения таких процессов.

Так, в частности, хорошим решением таких проблем становится обращение к профильным мероприятиям, таким как выставки, которые проходят в ЦВК «Экспоцентр» и привлекают огромное количество профессионалов, заинтересованных в самом активном общении и обмене информацией. Такой довольно популярной выставкой является «Нефтегаз».

На подобных выставках удается наиболее простым образом и без лишней потери времени выйти на необходимую информацию и получить при этом значительное количество партнеров и клиентов, обзавестись новыми полезными связями.

Именно такие мероприятия позволяют изучить новые технологии и оборудование и в целом получить все возможности для прогресса в рамках своей сферы бизнеса.

Радует, что попасть на такое мероприятие может каждый желающий, для этого достаточно купить билет, который можно заказать через интернет. Тем более что стоимость таковых оказывается вовсе не высокой, а пользы от них удается получить максимум при условии одного только визита.

Хотите увидеть современные примеры электрохимической защиты от коррозии трубопроводов для нефтепродуктов, приходите на выставку «Нефтегаз».

Типы ЭХЗ

Различают 2 вида ЭХЗ от коррозии:

  • анодная;
  • катодная и ее разновидность — протекторная.

Анодная

При анодной защите потенциал металла смещается в положительную сторону. Ее эффективность зависит от свойств металла и электролита. Методика используется для конструкций из углеродистых, высоколегированных и нержавеющих сталей, титановых сплавов и различных пассивирующихся металлов. Такая ЭХЗ отлично решает поставленные задачи в средах, хорошо проводящих ток.

Анодная электрохимзащита применяется реже, чем катодная, поскольку к защищаемому объекту выдвигается немало строгих требований. Однако у нее есть свои преимущества: значительное замедление скорости коррозионного процесса, исключение возможности попадания продуктов коррозии в среду или производимую продукцию. Оборудование ЭХЗ этого типа выбирают на основе малорастворимых элементов: платины, нержавеющих высоколегированных сплавов, никеля, свинца.

Анодная защита реализуется различными способами: смещением потенциала в положительную сторону посредством источника внешнего тока или введением окислителей в коррозионную среду.

Катодная

Катодная электрохимзащита используется в случаях, когда металлу не присуща склонность переходить в пассивное состояние. Ее суть заключается в приложении к металлоизделию внешнего тока от отрицательного полюса, поляризующего катодные участки, тем самым приближая показатель потенциала к анодным. Положительный полюс, который имеет источник тока, присоединяется к аноду, за счет чего коррозия защищаемого объекта минимизируется. При этом анод постепенно разрушается, требуя замены.

Катодная защита может быть реализована различными способами:

  • поляризация от внешнего источника электротока;
  • снижение скорости протекания катодного процесса;
  • контакт с металлом, потенциал коррозии у которого в этой среде более электроотрицательный.
Читать еще:  Сплавы металлов, их применение в промышленности

Поляризация от источника электротока, расположенного снаружи, часто используется при защите конструкций, находящихся в воде или почве. Этот вид системы ЭХЗ применяется для олова, алюминия, цинка, углеродистых и легированных сталей. В качестве внешнего источника тока выступают станции катодной защиты.

Протекторная

Строительство ЭХЗ протекторного типа подразумевает применение протектора. В этом случае к защищаемому сооружению присоединяют металл, имеющий более электроотрицательный потенциал. В результате разрушается не металлический объект, а протектор, который постепенно корродирует и требует замены на новый.

Данный тип электрохимзащиты эффективен в тех случаях, когда переходное сопротивление между окружающей средой и протектором небольшое. У каждого протектора есть свой радиус действия — это максимальное расстояние, на которое его можно удалить, не рискуя потерять защитный эффект.

Протекторная ЭХЗ применяется для предохранения от коррозионного разрушения сооружений, находящихся в нейтральных средах: в воздухе, почве, морской или речной воде. Протекторы для электрохимической защиты трубопроводов изготавливают из магния, цинка, алюминия, железа с дополнительным введением легирующих компонентов.

Для обеспечения высокого уровня протекторной защиты нужно правильно выбрать тип протектора в зависимости от объекта ЭХЗ (корпуса судов, резервуары с нефтепродуктами и пожарной водой, нефте газопроводы и другие металлоконструкции), а также важна среда где будет установлена протекторная группа (грунт, морская или речная вода, подтоварная вода). Данное условие является необходимым для обеспечения безопасности эксплуатации объекта ЭХЗ и увеличит эффективность протекторной защиты.

Разновидности катодной защиты

Катодная защита стальных конструкций от коррозии была изобретена в 1820-х годах. Впервые метод был применен в кораблестроении – защитными анодными протекторами был обшит медный корпус судна, что значительно уменьшило скорость корродирования меди. Методика была взята на вооружение и начала активно развиваться, что сделало ее одним из наиболее эффективных методов противокоррозионной защиты на сегодняшний день.

Катодная защита металлов, согласно технологии выполнения, классифицируется на две разновидности:

  • метод №1 – к защищающейся конструкции подсоединяется внешний источник тока, при наличии которого само металлическое изделие выполняется роль катода, тогда как в качестве анодов выступают сторонние инертные электроды.
  • метод №2 – “гальваническая технология“: защищаемая конструкция контактирует с протекторной пластиной изготовленной из металла, имеющего больший электроотрицательный потенциал (к таким металлам относится цинк, алюминий, магний и их сплавы). Функцию анода в данном метода выполняют оба металла, тогда как электрохимическое растворение металла протекторной пластины обеспечивает протекание через защищаемую конструкцию необходимого минимума катодного тока. По истечению времени протекторная пластина полностью разрушается.

Метод №1 – наиболее распространенный. Это простая в реализации противокоррозионная технология, которая эффективно справляется с многими разновидностями коррозии металлов:

  • межкристальная коррозия нержавеющей стали;
  • питтинговая коррозия;
  • растрескивание латуни из повышенного напряжения;
  • коррозия под воздействием блуждающих токов.

Подключение электродов катодной защиты к трубопроводу

В отличие от первого метода, пригодного для защиты больших по размеру конструкций (применяется для подземных и наземных трубопроводов), гальваническая электрохимзащита предназначена для применения с изделиями малых размеров.

Гальванический метод широко распространен в США, в России он практически не используется, поскольку технология возведения трубопроводов в нашей стране не предусматривает обработку магистралей специальным изоляционным покрытием, которое является обязательным условием для гальванической электрохимзащиты.

Отметим, что без изоляционного покрытия значительно увеличивается коррозия стали под воздействием грунтовых вод, что особенно характерно для весеннего периода и осени. Зимой, после замерзания воды, коррозия от влаги существенно замедляется.

Суть технологии

Катодная противокоррозионная защита осуществляется посредством применения постоянного тока, который подается на защищаемую конструкцию от внешнего источника (чаще всего используются выпрямители, преобразующие переменный ток в постоянный) и делает ее потенциал отрицательным.

Читать еще:  Как я проволоку волочил самодельными фильерами.

Сам объект, подключенный к постоянному току, является “минусом” – катодом, тогда как подведенное к нему анодное заземление, является “плюсом”. Ключевым условием эффективности катодной защиты является наличие хорошо проводимой электролитической среды, в качестве которого при защите подземных трубопроводов выступает грунт, тогда как электронный контакт достигается за счет использования металлических материалов с высокой проводимостью.

В процессе реализации технологии между электролитической средой (грунтом) и объектом постоянно поддерживается требуемая разница потенциала тока, величина которой определяется с помощью высокоомного вольтметра.

Основные технологии катодной защиты

Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.

Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее. Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее.

1 способ

Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).

2 способ

Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).

Заключение

Способы электрохимической защиты нельзя отнести к новым и, тем более, инновационным. Эффективность применения подобных методик в борьбе с процессами ржавления освоена давно. Однако, широкому распространению этого способа препятствует один серьезный недостаток. Дело в том, что катодная защита от коррозии трубопроводов неизбежно вырабатывает так называемые блуждающие токи. Они не опасны для целевой конструкции, но могут оказывать негативное воздействие на близкорасположенные объекты. В частности, блуждающий ток способствует развитию той же коррозии на металлической поверхности соседних труб.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector