Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность металлов

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

История открытия

Но так как алюминий обладает высокой химической активностью, то в чистом виде он практически не встречается в природе, поэтому в отличие от многих других металлов о нём стало известно только в начале XIX века, когда алюминий был формально получен.

В 1824 году датский физик в процессе электролиза впервые получил алюминий. Хотя металл и содержал примеси ртути и калия, этот случай является первым доказанным случаем получения алюминия в лабораторных условиях.

Имя учёного, привёдшего к революционному методу, было Ханс Кристиан Эрстед. Но понадобилось ещё почти полвека, чтобы разработать технологии для получения его в промышленном производстве. Больше всего природный алюминий встречается в составе минералов квасцов. Именно благодаря этому минералу алюминий и получил своё название, которое на латыни звучит Alumen.

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Читать еще:  Характеристики и технология изготовления обечаек

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

Можно ли повысить теплопроводность меди?

Медь широко используется при создании микросхем электронных устройств и призвана отводить тепло от нагреваемых электрическим током деталей. При попытке увеличить быстродействие современных компьютеров разработчики столкнулись с проблемой охлаждения процессоров и других деталей. В качестве одного из решений применялся вариант разбиения процессора на несколько ядер. Однако данный способ борьбы с перегревом себя исчерпал, и сейчас требуется искать новые проводники с более высокой теплопроводностью и электропроводимостью.

Одним из решений этой проблемы является недавно открытый элемент графен. Благодаря напылению из графена теплопроводность медного элемента увеличивается на 25%. Однако пока изобретение находится на уровне разработки.

Состав и структура алюминия

Для начала нашему рассмотрению подлежат структура и хим.состав алюминия. Предел прочности чистого алюминия крайне небольшой и составляет до 90 МПа. Если же к его составу добавить в небольшом соотношении марганец, медь, цинк или магний, прочность может возрасти до 700 МПа. К такому же результату приведет использование особой термической обработки.

Металл, обладающий наиболее высокой чистотой (99,99% алюминия), может применяться в специальных и лабораторных целях, в остальных же случаях используется алюминий с технической чистотой. Наиболее распространенными примесями в нем могут выступать кремний и железо, которые практически не растворяются в алюминии. В результате их добавки уменьшается пластичность и повышается прочность конечного металла.

Читать еще:  Воронение металла, стали в домашних условиях

Теперь поговорим о свойствах металла алюминия.

Данное видео расскажет о структуре алюминия:

Деформированное

Предел прочности на разрыв, σ МПа

Относительное удлинение после разрыва, δ ψ%

Относительное сужение, после разрыва, %

Твердость по Бринеллю, НВ

При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации.

Плотность материала

Плотность алюминия — это выражение массы материала в содержании единицы объема. Плотностью также называют предел массы вещества по отношению к занимаемому этим веществом объему. Именно по такой формуле вычисляется плотность легкого металла особой чистоты. Ее показатель равен 2,7*10 в кубе кг/м3. Плотность – это свойство, от которого зависит и другая характеристика материала, а именно – прочность. Так как плотность легкого металла довольно мала, то и прочность, соответственно, невелика. Потому алюминий не используется в качестве конструкторского материала.

Чтобы увеличить прочность металла, к нему добавляются другие элементы с более высокой плотностью. Под воздействием более плотных добавок, прочность алюминия резко возрастает. Также показатели прочности можно поднять с помощью применения механической или термической обработки. В результате удачного сочетания в сплавах, алюминий приобретает ценные конструкционные качества, выраженные в хорошей механической прочности при малой плотности материала. Сплавы на основе алюминия в некоторых отраслях промышленности с успехом заменяют такие металлы (сплавы), как медь или олово, цинк или свинец.

Превосходство меди над алюминием для проводки

1. Электропроводность

Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм 2 /м в то время, как у алюминия 0,028 Ом*мм 2 /м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.

Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм 2 , например, NYM 3х2,5, или алюминиевый сечением 4 мм 2 . Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.

Читать еще:  Бесконтактное измерение длины и пройденного пути — ИСД-5

2. Окисление

И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.

3. Механическая прочность

Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.

Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.

4. Теплопроводность

Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).

Инженерные коммуникации

Основными преимуществами медных водопроводов также являются долговечность и надежность. Кроме того, этот металл способен придавать воде особые уникальные свойства, делая ее полезной для организма. Для сборки газопроводов и систем отопления медные трубы также подходят идеально — в основном благодаря своей коррозийной стойкости и пластичности. При аварийном повышении давления такие магистрали способны выдерживать гораздо большую нагрузку, чем стальные. Единственным недостатком медных трубопроводов является их дороговизна.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector