Palitra21.ru

Домашний уют — журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы борьбы с коррозией алюминия

Окисляется алюминий в атмосфере быстро, но на небольшую глубину. Этому препятствует защитная окисная пленка. Окисление ускоряется выше температуры плавления алюминия. Если нарушается целостность оксидной пленки, алюминий начинает корродировать. Причинами истончения его защитного слоя могут стать различные факторы, начиная с воздействия кислот, щелочей и заканчивая механическим повреждением.

Коррозия алюминия – саморазрушение металла под воздействием окружающей среды. По механизму протекания выделяют:

  • Химическую коррозию – происходит в газовой среде без участия воды.

  • Электрохимическую коррозию – протекает во влажных средах.

  • Газовое разрушение – но сопровождает нагрев и горячую обработку алюминия. В результате взаимодействия кислорода с металлами возникает плотная окисная пленка. Вот почему алюминий не ржавеет, как и все цветные металлы.

На видео: электрохимическая коррозия металлов и способы защиты.

Особенности химического процесса

Химическая обработка металлической поверхности предусматривает применение растворов и расплавов различных окислителей, например, солей хромовой или азотной кислоты.

Их использование позволяет обеспечить антикоррозийную защиту металлу. При этом обработка может выполняться с помощью как щелочных, так и кислотных составов.

Процесс химического оксидирования щелочным методом происходит при температуре 30-1800, которая определяется типом металла.

Например, химическое оксидирование алюминия и его сплавов выполняют при температуре 80-1000, время обработки составляет 10-20 минут.

Оттенок пленки, образующейся на поверхности цветного металла, зависит от толщины и структуры сплавов.

Если химическое оксидирование алюминия выполнить в щелочном растворе слабой концентрации и при низкой температуре, можно получить тонкую защитную пленку с цветом побежалости.

И наоборот, если сделать для алюминия и его сплавов слишком концентрированный раствор щелочи и использовать высокую температуру обработки, защитное покрытие будет рыхлым.

Большой промежуток оксидирования может обернуться травлением металла.

Обработка сложнолегированной нержавеющей стали (оксидирование стали) происходит за счет применения концентрированного раствора азотной кислоты.

При температуре 18-550 с продолжительностью 15-60 минут.

Разновидности анодирования

На сегодняшний день можно встретить компании предоставляющие различные услуги по анодированию алюминия. Это и классическое, и твердое, и цветное анодирование. Некоторые организации предлагают анодировать алюминий в домашних условиях. Каждое направление имеет свои интересные особенности, о которых мы и поговорим дальше.

Твердое анодирование алюминия — это особый способ получения сверхпрочной микропленкина поверхности алюминиевой детали. Он получил небывалое распространении в авиа, космо и автостроении, архитектуре и схожих областях. Суть процесса в том, что для анодирования берется не один электролит, а несколько в определенной комбинации. Так одна из запантенованных методик подразумевает смешение серной, щавелевой, винной, лимонной и борной кислот в пропорции 70-160/30-80/5-20/2-15/1-5 г/л. и постепенным увеличением плотности тока с 5 до 28 В. при температуре раствора до 25 градусов по Цельсию. Твердость покрытия достигается благодаря изменению структуры пористых ячеек анодной пленки.

Цветное анодирование алюминия — технология изменения цвета анодированной детали. Производится как до, так и после расположение детали в электролите. Бывает 4 видов:

Первое — адсорбационное окрашивание — происходит сразу после перемещения элемента из ванной с электролитом, т.е до заполнения пор. Деталь также погружают в раствор с красителем, разогретым до определенной температуры (55-75 град. по Цельсию), на некоторое время (обычно от 5 до 30 минут), а затем дополнительно уплотняют, чтобы увеличить окрашенный слой.

Второе — электролитическое — оно же черное анодирование алюминия — это получение сначала бесцветной анодной пленки, а затем продолжение процесса в кислом растворе солей некоторых металлов. Цвет готового изделия получается от слабобронзового до черного. Анодирование алюминия в черный цвет востребовано в производстве строительных профилей и панелей.

Читать еще:  Съем изделий из пресс-формы. Мы побеждаем брак! (4780 просмотров)

Третий вид — интерференционное окрашивание — то же, что и предыдущее, но позволяет получить большее количество оттенков благодаря формированию специального светоотражающего слоя.

Ну и наконец, четвертый вид — интегральное окрашивание — в раствор электролита для анодированию добавляют органические соли, благодаря которым и происходит покраска изделия.

Теперь вы получили общее представление о процессе анодирования. Как видно из всего сказанного — электрохимическое оксидирование позволяет добиться самых разных результатов, не тратя при этом огромных денег на организацию процесса. Не удивительно, что в нем так заинтересованы многие предприниматели.

Окрашивание алюминиевой продукции

Большую часть производимых изделий предохраняют нанесением слоя красящих веществ. Если красители растворены, то крашение называют мокрым. Если красители сухие, процедуру часто называют порошковым окрашиванием.

Мокрое окрашивание

Нанесение лакокрасочных слоёв возможно после защиты алюминия пассивирующим грунтом, в состав которых входят соединений цинка, стронция. Грунт наносят в две стадии на скрупулезно подготовленную металлическую основу. После полного испарения растворителя из грунтовочной смеси поверхность покрывают изолирующим внешним слоем масляного или глифталевого лака. Существуют функциональные лакокрасочные составы, защищающие от химических реагентов, от бензина, масел. Для получения цветных декоративных конструкций используют молотковые лаки. При некоторых технологиях защиты наносят бакелитовый лак под давлением, чтобы гарантированно заполнить все микропоры. Выбор покрытия обусловлен будущими условиями эксплуатации. Технология нанесения постоянно совершенствуется.

Порошковое окрашивание

Для использования этого метода металл также нужно очистить от слоя жира, других включений. Подготовку проводят погружением в щелочные, слабощелочные (почти нейтральные), кислотные растворы. Для повышения эффективности очистки иногда добавляют смачиватели.

Следующей стадией подготовки некоторых алюминиевых конструкций является формирование конверсионного слоя обработкой хроматными, фосфатными составами. Иногда используют циркониевые, титановые соединения. Необходимость этого этапа определяется специфическими особенностями изделия. Это вопрос компетенции технологов. Выполнение каждого этапа обработки чередуется с обязательным промыванием и сушкой материала.

Затем наносят полимер, выполняющий защитную функцию. Широко используют полиэфиры. Они образуют плотный слой, стойкий к химическому, механическому, термическому воздействию. Покрытия из полимеризованного уретана обладают большей твердостью. Применяют также эпоксидные, полиэфирно-эпоксидные, акриловые порошки – краски. Они формируют поверхность любого заданного цвета, структуры, способностью отражать световые лучи. Красящий порошок наносят электростатическим или трибостатическим методом.

Электростатически частицы пигмента в воздухе (флюиды) заряжают действием электродов. Трибостатически крупинки краски заряжаются благодаря силе трения, продуцируемой специальным пистолетом. Процесс реализуют в камерах. Неиспользованный порошок собирается, возвращается в исходное место. Стадия завершается полимеризацией при высокой температуре.

Оба вида окрашивания алюминия позволяют получать цвета, соответствующие международным стандартам. Некоторые производственные требования обуславливают необходимость последовательного сочетания двух методов: анодного оксидирования и окрашивания. Количество, суть используемых методов определяются специалистами.

Нивелирование влияния соседствующих материалов

Стимулировать коррозию алюминия могут металлы, материалы, находящиеся рядом. Для предотвращения этого эффекта рядом с алюминиевыми конструкциями позволительно нахождение только нержавеющей или оцинкованной стали. Могут предотвратить контакт прокладки из резины, паронита, битума. Алюминиевые конструкции не должны соприкасаться с бетоном, кирпичом, камнем, деревом. Для защиты рекомендован лак, любые другие изолирующие материалы.

Технология анодирования

Процесс анодирования можно разделить на три части:

  • подготовительный процесс;
  • химическую обработку;
  • закрепление.

Подготовительный процесс

На этом этапе алюминиевый профиль подвергается механической и электрохимической обработке. Под механической обработкой понимается очистка металла, его шлифование и обезжиривание. Далее изделие кладут сначала в щелочной раствор для травления, а затем перекладывают в кислотный для осветления. Завершается подготовка промывкой поверхности. Причем промывка осуществляется несколько раз, чтобы полностью удалить кислотные вещества с металла.

Химическая обработка

Химическое оксидирование алюминия представляет собой обработку металла в электролите. В качестве электролитов используются растворы различных кислот (серной, хромовой, щавелевой, сульфосалициловой). Порой в растворы добавляют соль или органическую кислоту.

Читать еще:  Способы быстрой очистки бронзовых изделий от налета

Наиболее распространенный электролит – серная кислота. И все же этот электролит не применяется для обработки изделий сложной формы, на которых имеются небольшие отверстия или зазоры. В таких случаях предпочтительна хромовая кислота. А вот щавелевая кислота позволяет значительно улучшить разноцветные изоляционные покрытия.

Химическое оксидирование алюминия

Качество процесса зависит от нескольких составляющих, в числе которых концентрация, температурный режим и плотность тока. Высокие температуры способствуют ускорению анодирования. Причем пленка образуется мягкая и высокопористая. Если необходимо твердое покрытие, применяется более низкая температура.

Химическое оксидирование алюминия может осуществляться при температурах от нуля, до плюс 50 градусов по Цельсию. Плотность тока может варьироваться от 1 до 3 Ампер на квадратный дециметр. Показатель электролитной концентрации может находиться в пределах 10-20%.

Закрепление

После оксидирования металл выглядит, как пористая поверхность (даже при использовании холодного режима). Чтобы поверхность была достаточно прочной, эти поры нужно перекрыть. Делается это одним из трех способов:

  • окунанием изделия в горячую пресную воду;
  • обработкой паром;
  • размещением металла в так называемом «холодном растворе».

Обратите внимание! Если изделие будет окрашиваться, процесс закрепления не нужен, поскольку лакокрасочный материал естественным образом заполнит имеющиеся поры.

Существует три разновидности оборудования для оксидирования алюминия:

  • основное (ванны);
  • обслуживающее (обеспечение работы);
  • вспомогательное (подача изделий в ванну, проведение подготовки, складирование и т.п.).

к содержанию ↑

Суть и назначение технологии

В своей основе оксидирование стали имеет окислительно-восстановительную реакцию металла при его взаимодействии с кислородом воздуха, электролитом или специальными кислотно-щелочными растворами. В результате на поверхности детали образуется защитная пленка, повышающая технические характеристики металла:

  • увеличивает твердость;
  • снижает образование задиров;
  • повышает способность деталей к прирабатыванию;
  • увеличивает срок службы;
  • создает декоративное покрытие.

Добавление в электролит растворов для окрашивания позволяет создавать изделия из металла с поверхностями разных цветов.

Покрытие оксидной пленкой применяют для различных материалов. В ювелирной промышленности и при создании бижутерии используют оксидирование многих металлов:

  • серебра;
  • алюминия;
  • меди;
  • титана;
  • латуни;
  • бронзы.

Сущность обработки – в увеличении прочности и придании дополнительной декоративности. Изделия из серебра хорошо держат форму. Это позволяет создавать украшения с острыми углами и тонким орнаментом. С помощью оксидов создается патина, имитирующая старину, и другие эффекты.

В зависимости от характеристик и свойств металла используют различные технологии создания сложных окислов на поверхности.

К положительным качествам оксидирования относится его распределение по поверхности тонкой пленкой в несколько микрон – тысячных долей миллиметра. При этом не меняются размеры деталей и посадочных мест сверху и на поверхности.

Экспериментальные результаты

Нами разработаны технология и источник питания предназначенные для проведения высоковольтного электрохимического оксидирования при импульсно-периодическом напряжении 200–500 В. Частота следования импульсов длительностью 1–3 мс составляет 100–300 Гц. Это позволяет получать твердые, износостойкие пленки оксида алюминия толщиной до 70 мкм. Следует заметить, что высокое напряжение за счет импульсной подачи энергии не приводит к возникновению разрушения покрытия, как это происходит при использовании иных технологий, а также обеспечивает подавление возникновения микродуг. В таблице приведены сравнительные характеристики наиболее популярных методов оксидирования.

Таблица. Сравнение свойств оксидированного алюминия в зависимости от метода получения

Высоковольтное электрохимическое оксидирование (ВВЭО)МДОТвердое анодированиеЭлектрохимическое оксидирование
Максимальная толщина покрытия, мкм702006050
Время обработки, мин90120120120
Микротвердость, ГПа8214,63,6
Коррозионная стойкость, ч120020001000500
Энергозатраты, кВт/ч0,264,60,30,12
Читать еще:  Чем красить мангал? Жаропрочная краска по металлу

Использование высокого анодного импульсного напряжения при формировании оксидного слоя позволяет получить пленки микротвердостью более 8 ГПа, с пробивным напряжением до 2500 В. Скорость роста пленки составляет 1–1.5 мкм/мин. Кроме того, повышенное напряжение формирования оксидной пленки приводит к уменьшению размера и количества пор в покрытии, что позволяет достигнуть коэффициента теплопроводности оксида алюминия 3.5 Вт/м·К. На рисунке представлена морфология поверхности оксидных пленок полученных различными методами.

Морфология поверхности оксидированного алюминия, полученного методами ВВЭО (а), электрохимического оксидирования (б) и МДО (в)

Как видно из рисунка, поверхность алюмооксидной керамики, сформированной методом ВВЭО, характеризуется глобулярной плотной структурой с малым количеством пор и низкой шероховатостью (0.1–0.3 мкм). На поверхности присутствуют микронеровности различной природы, при этом поверхность равномерная, без провалов и выступов. Поры в покрытии расположенные хаотично, не образуют четко выраженную матрицу. Размеры пор от 3 до 10 нм, расстояние между порами от 5 нм до 1 мкм. При формировании методом МДО поверхность получается более шероховатая с порами диаметром до 3 мкм.

Закрепление результата

Качество анодирования алюминия зависит от завершающего этапа – закрепления покрытия. Для этого после нанесения покрытия и промывки детали помещают на четверть часа в раствор марганца. После выемки необходимо детали промыть под горячей и холодной водой для удаления из пор остатков раствора.

Перед окрашиванием необходимо закупорить микроскопические поры на пленке. Для чего изделия кипятят в дистиллированной воде в течение 30-40 минут.

Плазменное оксидирование

Оксидирование плазмой происходит при условиях подобных к гальваническому чернению. При определенном достижении критического значения поляризации происходит плазменный микроразряд на поверхность анодируемой детали. В отличие от электрохимического азотирования в формировании образовавшейся пленки участвует не только раствор щелочи, но и материал катода. Характерной особенностью представленного метода можно назвать глубокое проникновение в слой нержавеющего металла и возможность получения равномерного покрытия на объектах сложной геометрической конфигурации.

Интересный факт: в месте пробоя искры при плазменном оксидировании температура составляет порядка 10000К., а давление сопоставимо с величиной 10 2 МПа. После прекращения действия искры происходит резкое охлаждение поверхности, которые приводят к появлению новых физических свойств и исследованию их как элементов нанотехнологий.

Покрытия, которые образуются при применении такого метода, характеризуются повышенной адгезией к основе и свойствам, приближенным к керамике. Учитывая цену оборудования и недостаточность исследований в этой области, его трудоемкость и необходимость высокой квалификации персонала не позволяют широко применять этот процесс в промышленности, ограничиваясь дорогостоящими отраслями и штучными изделиями. Для алюминия, титана и сплава магния плазменное оксидирование находит ниши и распространение в промышленности.

Обратите внимание: терминология этого процесса не устоялась по сегодняшний день. Поэтому встретив в литературе оксидирование в режиме искрения, анодное осаждение, режим максимального напряжения, плазменно-электролитическое оксидирование надо понимать, что это один и тот же процесс – плазменное оксидирование.

Заключение

Оксидирование – один из самых действенных методов повышения антикоррозионной стойкости стали. За счет образования плотного защитного увеличивается прочность и долговечность изделий, повышаются диэлектрические свойства и декоративные качества.

Существуют доступные способы проведения работы в домашних условиях. Соблюдение правил работы с агрессивными веществами, и выполнение инструкций поможет без проблем провести процедуру самостоятельно.

Используемая литература и источники:

  • Справочник металлурга и химика цветной металлопромышленности. Часть вторая / Д. Лиддель. — М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии
  • Окрашивание полимерных материалов / А. Мюллер. — М.: Профессия, 2007.
  • Химическая технология переработки редкометального сырья Кольского полуострова. — М.: Наука
  • Статья на Википедии

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector