Palitra21.ru

Домашний уют — журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количество теплоты

Количество теплоты. Удельная теплоёмкость

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​ ( Q ) ​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​ ( (t_2,^circ C) ) ​ и начальной ( (t_1,^circ C) ) температур: ​ ( Qsim(t_2-t_1) ) ​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​ ( c ) ​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты ​ ( Q ) ​, необходимое для нагревания тела массой ​ ( m ) ​ от температуры ( (t_1,^circ C) ) до температуры ( (t_2,^circ C) ) , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

Читать еще:  Коррозия металла. Почему возникает и как избежать

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи.

Дано:
​ ( m_1 ) ​ = 200 г
​ ( m_2 ) ​ = 100 г
​ ( t_1 ) ​ = 80 °С
​ ( t_2 ) ​ = 20 °С
​ ( t ) ​ = 60 °С
______________

​ ( Q_1 ) ​ — ? ​ ( Q_2 ) ​ — ?
​ ( c_1 ) ​ = 4200 Дж/кг · °С

2. СИ: ​ ( m_1 ) ​ = 0,2 кг; ​ ( m_2 ) ​ = 0,1 кг.

3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​ ( Q_1 ) ​ и охлаждается от температуры ​ ( t_1 ) ​ до температуры ​ ( t ) ​. Холодная вода получает количество теплоты ​ ( Q_2 ) ​ и нагревается от температуры ​ ( t_2 ) ​ до температуры ​ ( t ) ​.

4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: ​ ( Q_1=c_1m_1(t_1-t) ) ​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: ( Q_2=c_2m_2(t-t_2) ) .

5. Вычисления.
​ ( Q_1 ) ​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
( Q_2 ) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

Формула

Перед тем, как приступить к непосредственному расчёту параметра следует ознакомиться с формулой и её компонентами.

Формула для расчёта удельной теплоёмкости имеет следующий вид:

Знание величин и их символических обозначений, использующихся при расчёте, крайне важно. Однако необходимо не только знать их визуальный вид, но и чётко представлять значение каждого из них. Расчёт удельной теплоёмкости вещества представлен следующими компонентами:

ΔT – символ, означающий постепенное изменение температуры вещества. Символ «Δ» произносится как дельта.

ΔT можно рассчитать по формуле:

  • t1 – первичная температура;
  • t2 – конечная температура после изменения.

m – масса вещества используемого при нагреве (гр).

Q – количество теплоты (Дж/J)

На основании Цр можно вывести и другие уравнения:

  • Q = m*цp*ΔT – количество теплоты ;
  • m = Q/цр*(t2 — t1) – массы вещества;
  • t1 = t2–(Q/цp*m) – первичной температуры;
  • t2 = t1+(Q/цp*m) – конечной температуры.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.


Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Общее определение удельной теплоемкости

Напомним, что передача энергии от одного тела к другому без совершения работы называется теплопередачей или теплообменом. Теплообмен происходит, когда тела имеют разные температуры. Величина энергии, переданная телу в результате теплообмена, называется количеством теплоты Q. В соответствии с первым законом термодинамики количество теплоты Q равно изменению внутренней энергии тела ΔU:

Следует помнить, что количество теплоты определяет только изменение внутренней энергии, а не его конкретное значение. Полная величина внутренней энергии — это сумма потенциальной энергии взаимодействия частиц, из которых состоит физическое тело, и кинетической энергии их беспорядочного движения.

Рис. 1. Что такое теплообмен и теплопередача

Читать еще:  ЖАРОПРОЧНЫЕ И ТЕРМОСТОЙКИЕ МАТЕРИАЛЫ (от -250°С до +1200°С)

Изменение внутренней энергии пропорционально массе тела m и изменению температуры:

$ Q = ΔU = c*m* ΔT $ (2),

где: $ΔT = T_k — T_н$ —разница между конечной и начальной температурами.

Коэффициент пропорциональности c в формуле (2) называется удельной теплоемкостью вещества:

В Международной системе СИ количество теплоты измеряется в джоулях, масса — в килограммах, а разница температур — в градусах Кельвина. Значит единица измерения удельной теплоемкости будет:

Из формул (3), (4) следует, что величина удельной теплоемкости показывает, какое количество теплоты необходимо, чтобы нагреть 1 кг вещества на 10K.

Раньше, до принятия в системе СИ в качестве единицы измерения энергии джоуля, использовалась специальная единица — калория (кал), равная количеству теплоты, которое нагревает 1 грамм воды на 1 градус Цельсия. Опытным путем определен, так называемый, механический эквивалент теплоты — соотношение между джоулем и калорией:

В настоящее время данную единицу используют при определении количества потребленной тепловой энергии в жилых домах и на предприятиях.

Значения удельных теплоемкостей для твердых, жидких и газообразных веществ определены с помощью физических измерений и сведены в справочные таблицы.

Рис. 2. Таблица значений удельной теплоемкости

Сферы применения

Свойство химического элемента № 13 отлично накапливать тепло позволяет его широко использовать в промышленном производстве и теплотехнике.

Алюминий применяется в качестве сырья для создания строительных конструкций. Он обладает легкостью, прочностью, устойчивость и является привлекательным сырьем для производства оконных конструкций.

Химический элемент образует неядовитые оксиды, что разрешает использование в производстве фольги для нужд пищевой промышленности. Алюминий является сырьем для создания космических ракет и самолетов. Высокий коэффициент отражения определяет его использование в изготовлении зеркал.

Коэффициент линейного расширения α

Коэффициент линейного расширения α. Наибольшее влияние на коэффициент α оказывает углерод, в особенности в связанном состоянии. Одному проценту углерода соответствует примерно в 5 раз большее количество цементита, чем графита. Поэтому графитизирующие элементы (Si, Al, Ti, Ni, Сu и др.) повышают, а антиграфнтизирующие (Cr, V, W, Мо, Мn и др.) уменьшают коэффициент линейного расширения,

Наибольшим значением α отличаются аустенитные никелевые чугуны, а также ферритные алюминиевые чугуны типа чугаль и пирофераль. Поэтому при достаточно высоком содержании Ni, Сu, Мn значение α; резко увеличивается. Однако при содержании Ni>20% α понижается : и достигает минимума при 35—37 % Ni. Форма графита существенно влияет на коэффициент линейного расширения лишь при низких температурах; α высокопрочного чугуна с шаровидным графитом несколько выше, чем α чугуна с пластинчатым графитом.

Влияние примесей на характеристики металла

Промышленный чугун содержит примеси. Эти примеси сильно сказываются на свойствах, характеристиках и структуре чугуна.

  • Так, марганец тормозит процесс графитизации. Выделение графита приостанавливается, в результате чугун приобретает способность отбеливаться.
  • Сера ухудшает литейные и механические характеристики.
  • Сульфиды в основном образуются в сером чугуне.
  • Фосфор улучшает литейные свойства, увеличивает износостойкость и повышает твердость. Однако на этом фоне чугун все же остается хрупким.
  • Кремний больше всех влияет на структуру материала. В зависимости от количества кремня получаются белый и ферритный чугун.

Для получения определенных характеристик в чугун часто вводят специальные примеси при его изготовлении. Такие материалы получили название легированные чугуны. В зависимости от добавленного элемента чугуны могут называться алюминиевыми, хромистыми, серными. В основном элементы вводят с целю получить износостойкий, жаропрочный, немагнитный и коррозионностойкий материал.

В данном видео будет приведено сравнение свойств чугуна и стали:

Плотность и удельная теплоемкость кирпича: таблица значений

Кирпич — ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич, но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость.

Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления. Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться.

Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу. Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м 3 . Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м 3 . Чем выше пористость, тем меньше плотность кирпича.

Читать еще:  Нержавеющие стали: как состав влияет на свойства

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м 3 . Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича

Вид кирпичаТемпература,
°С
Плотность,
кг/м 3
Теплоемкость,
Дж/(кг·град)
Трепельный-20…20700…1300712
Силикатный-20…201000…2200754…837
Саманный-20…20753
Красный0…1001600…2070840…879
Желтый-20…201817728
Строительный20800…1500800
Облицовочный201800880
Динасовый1001500…1900842
Динасовый10001500…19001100
Динасовый15001500…19001243
Карборундовый201000…1300700
Карборундовый1001000…1300841
Карборундовый10001000…1300779
Магнезитовый1002700930
Магнезитовый100027001160
Магнезитовый150027001239
Хромитовый1003050712
Хромитовый10003050921
Шамотный1001850833
Шамотный100018501084
Шамотный150018501251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град). Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м 3 .

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м 3 .

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

  1. Франчук А.У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  3. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
  4. Михеев М.А., Михеева И.М. Основы теплопередачи.

Использование различных материалов в строительстве

Вернуться к оглавлению

Дерево

Для комфортного проживания в доме очень важно, чтобы материал обладал высокой теплоемкостью и низкой теплопроводностью.

В этом отношении древесина является оптимальным вариантом для домов не только постоянного, но и временного проживания. Деревянное здание, не отапливаемое длительное время, будет хорошо воспринимать изменение температуры воздуха. Поэтому обогрев такого здания будет происходить быстро и качественно.

В основном в строительстве используют хвойные породы: сосну, ель, кедр, пихту. По соотношению цены и качества наилучшим вариантом является сосна. Что бы вы ни выбрали для конструирования деревянного дома, нужно учитывать следующее правило: чем толще будут стены, тем лучше. Однако здесь также нужно учитывать ваши финансовые возможности, так как с увеличением толщины бруса значительно возрастет его стоимость.

Вернуться к оглавлению

Кирпич

Данный стройматериал всегда был символом стабильности и прочности. Кирпич имеет хорошую прочность и сопротивляемость негативным воздействиям внешней среды. Однако если принимать в расчет тот факт, что кирпичные стены в основном конструируются толщиной 51 и 64 см, то для создания хорошей теплоизоляции их дополнительно нужно покрывать слоем теплоизоляционного материала. Кирпичные дома отлично подходят для постоянного проживания. Нагревшись, такие конструкции способны долгое время отдавать в пространство накопившееся в них тепло.

Выбирая материал для строительства дома, следует учитывать не только его теплопроводность и теплоемкость, но и то, как часто в таком доме будут проживать люди. Правильный выбор позволит поддерживать уют и комфорт в вашем доме на протяжении всего года.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector