Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Режимы резания

Режимы резания

В процессе фрезерования зубья многолезвийного режущего инструмента, вращающегося вокруг своей оси, поочерёдно следуя один за другим, врезаются в материал заготовки, которая движется на фрезу. В результате такого рода движений происходит отделение слоя металла с образованием стружки. Элементами режима резания, сопровождающими фрезерование, является глубина, на которую погружается фреза, скорость резания с которой фрезеруется материал и подача движения заготовки.

Ширина фрезерования это расстояние, на котором главные режущие кромки зубьев фрезы соприкасаются с заготовкой.

Глубина резания это слой металла с определённой толщиной, который удаляется в процессе фрезерования за один рабочий проход. Измеряется глубина фрезерования как разность между обрабатываемой поверхностью и образующейся в результате обработки.

Главное движение при фрезеровании это есть ни что иное как вращение фрезы. Выполняя технологические операции, связанные с фрезерованием, режущему инструменту задаётся вращение и при этом в настройках станка устанавливается число оборотов за единицу времени. Однако главным параметром вращения фрезы является не то число оборотов, с которым она поворачивается вокруг своей оси, а скорость резания.

2 Материал и геометрия рабочего инструмента

Материал, из которого сделана фреза, напрямую влияет на возможности и качество режущих операций. Наиболее эффективным инструментом признаются фрезы из быстрорежущей стали и резцы с пластинками из твердых сплавов. Их используют в настоящее время для большинства фрезерных операций, но при условии, что технический потенциал станков (показатель мощности их двигателя, скорость вращения шпинделя и так далее) позволяет работать с такими приспособлениями.

Некоторые агрегаты старых моделей просто-напросто не могут применять твердосплавный и быстрорежущий инструмент. Тогда на них работают обычными концевыми и иными фрезами. Если же изделие после фрезерования должно иметь высокую точность и чистоту поверхности, и при этом скорость выполнения процедуры не имеет большого значения, лучше использовать приспособления из обычных легированных и углеродистых сталей.

Геометрия режущей части инструмента также влияет на выбор конкретного режима обработки детали. Форму и размеры, которые имеет зуб фрезы, задние и передние ее углы, параметры переходной кромки и углов подбирают из специальных таблиц. В них даются сведения о том, какие размеры обязан иметь зуб и все указанные углы при работе с заготовками, сделанными из различных материалов (легированные, жаропрочные, углеродистые стали, сплавы на основе меди, чугун). При использовании быстрорежущего инструмента все нужные параметры берутся из другой таблицы.

Современные комбинаты по производству фрез в большинстве случаев поставляют их с четко обозначенными геометрическими размерами, которые оговорены в соответствующих Госстандартах. Каким-либо образом изменить геометрию такого инструмента фрезеровщик не может, поэтому ему требуется правильно сделать выбор нужного ему приспособления (например, торцевой фрезы) из набора имеющихся рабочих приспособлений. Особых проблем при этом у опытного специалиста не возникает, так как он может воспользоваться таблицами с рекомендованными геометрическими величинами фрезерного инструмента.

Основные понятия о работе фрезерных станков

Оборудование бывает совершенно разное, основная классификация зависит от того, в какой плоскости расположена рабочая зона. В связи с этим различают вертикальные и более распространенные горизонтальные станины. Соответственно, расположение шпинделя и крепежных элементов будет различным. По своей спецификации различают станки универсальные (многофункциональные), а также специализированные, например:

для формирования ровных плоскостей;

для проточки фигурных пазов;

зуборезное оборудование (создание зубчатых соединений) и так далее.

Это были перечислены примеры при работе по металлу. А по дереву – ручные, стационарные, шпиндельные и барабанные (они очень опасные, поэтому сейчас используются редко, зато очень эффективное).

Отдельно стоит сказать о тех станках, которые оснащены числовым пультом управлением (ЧПУ). Они отличаются следующими достоинствами:

Простотой эксплуатации: оператору не понадобится совершать многих движений, можно только наблюдать за действиями и контролировать их.

Программа самостоятельно рассчитывает оптимальную схему движения и режим резания при фрезеровании. Это будет наиболее короткий маршрут передвижения резца с максимальной эффективностью.

Повышенной точностью резания. Здесь минимальные допустимые погрешности, которые нельзя сравнить с теми, которые проявляются при механической, ручной обработке.

Возвращаясь к более простым станкам, посмотрим, какие есть у него основные узлы:

Станина. Она крепкая, должна выдержать практически любые нагрузки. Она включает встроенную коробку переключения скоростей. Этот блок предназначен для регулирования вращения вертикально стоящего шпинделя, а также фрезы, которая закреплена на нем.

Стол с поперечными полозьями. На него крепятся заготовки, которые подлежат продольному движению. Также внизу стоит объект, отвечающий за подачу. Он включает разные рукояти для определения перемещений.

Универсальность увеличивается, если присутствует поворотный стол – функций, которые можно выполнить на фрезерном оборудовании, становится больше. Кроме того, у широкоуниверсальных приборов дополнительно есть два шпинделя, что дает возможность осуществлять различные технологии фрезеровки.

Выбор инструмента

В качестве оснастки фрезерных станков используются различные фрезы. Это приспособления для резки, изготовленные из инструментальной стали высокой прочности. Есть множество признаков, согласно которым происходит классификация:

  • по материалу их режущих элементов;
  • по расположению режущих частей зубьев;
  • по виду заточки зубьев;
  • по направлению зубьев (винтовые, наклонные и т.д.);
  • по конструкции изделия (составное, цельное, сборное);
  • по виду крепления режущих элементов.
  • по назначению – название резца созвучно с задачей фрезеровщика. Рассмотрим некоторые из разновидностей.

Для плоских поверхностей

В основном при обработке плоскостей применяются цилиндрические и торцевые фрезы, а также дисковые – для распиловки. Если инструмент в виде цилиндра, то он может быть нескольких типов – с цельными или сменными режущими краями. Крупные монолитные обычно применяются на первых стадиях металлообработки, при черновых работах, в то время как небольшие и разборные – для чистовой.

Торцевой резец больше подходит для протяженных заготовок. Тогда ее зубья могут быть по бокам – с торца. Если это большой складной инструмент, то его используют, соответственно, для широких поверхностей.

Использование твердосплавных резцов обязательно, если вы имеете удовольствие работать с плохо обрабатываемыми тугоплавкими материалами. Но стоит учесть, что понадобится защитная ширина и протяженность режущей кромки, тогда будет отходить хорошая стружка.

Для художественного фрезерования

Декоративные металлические вставки пользуются особенной популярностью в интерьере жилья или офисного помещения, но также такие элементы можно добавлять при проектировании автомобилей, при гравировке любых изделий, например, наручных часов, и в прочих случаях.

В основном для этих целей применяются концевые или дисковые насадки. Более современный, производительный и точный способ – использование лазерных станков с ЧПУ, они быстро и идеально верно повторяют заданные контуры, наносят углубления и узоры. Их можно приобрести в интернет-магазине https://stanokcnc.ru/.

Режимы резания при фрезеровании концевыми или пазовыми фрезами идеально подходят для создания паза, канавки. Они могут иметь от 1 до 4 и более заходов, различную ширину и длину зубцов, сменные насадки или монолитные. Изготавливаются они из любого пригодного материала. Большое многообразие позволяет выбрать инструмент в зависимости от назначения. К слову, они подходят как для ручного управления станком, так и для числового.

Читать еще:  Стационарные электрические фуганки: виды и характеристики

Дисковые прекрасно справляются со множеством задач – начиная от грубой и быстрой распиловки, заканчивая тонкой, практически ювелирной работой по декоративному металлическому элементу.

Для обработки кромок

К сожалению, не каждый срез обладает идеальными характеристиками: гладкий, без зацепок и заусенцев, с правильным классом шероховатости и точности. То же касается всех углов – к ним сложно подобраться, по крайней мере не так легко, как к прямой поверхности. Для этого используют следующие насадки:

  • Отрезная и шлицевая могут быть применимы для отделения одной части материала от основного массива.
  • С помощью угловой можно обрабатывать углы и край. При этом есть две разновидности данного инструмента – с одной и двумя режущими кромками.
  • Фасонная применяется для деталей с нестандартным и сложным изгибом – для круглых, вогнутых поверхностей. Очень часто используется для нарезания некоторого крепежного инструментария.

Обычно все из представленных видов имеют варианты с монолитным изготовлением из твердоплавкого сырья, а также складные – со съемными насадками. Первый вариант больше подходит для черновой металлообработки, а второй – для чистовой и тонкой.

Правила выбора режима резания при фрезеровании фрезами — таблицы и советы

На предприятиях, в составе которых есть подразделения, занимающиеся поверхностной обработкой заготовок, на основе нормативных документов составляются специальные карты, которыми руководствуется оператор при изготовлении той или иной детали. Хотя в некоторых случаях (к примеру, новое оборудование, инструмент) нюансы технологических операций фрезеровщику приходится определять самостоятельно. Если маломощный станок эксплуатируется в домашних условиях, тем более, никаких официальных подсказок под рукой, как правило, нет.

Эта статья поможет не только понять, на основе чего производится расчет режима резания при фрезеровании и выбор соответствующего инструмента, но и дает практические рекомендации, которые достаточны для обработки деталей на бытовом уровне.

Особенность фрезерования в том, что режущие кромки вступают в прямой контакт с материалом лишь периодически. Как следствие – вибрации, ударные нагрузки и повышенный износ фрез. Наиболее эффективным режимом считается такой, при котором оптимально сочетаются следующие параметры – глубина, подача и скорость резания без ухудшения точности и качества обработки. Именно это позволяет существенно снизить стоимость технологической операции и повысить производительность.

Предусмотреть буквально все нюансы фрезерования невозможно. Заготовки, подлежащие обработке, отличаются структурой, габаритами и формой; режущие инструменты – своей геометрией, конструктивным исполнением, наличием/отсутствием защитного слоя и тому подобное. Все, что изложено по режимам резания далее, следует рассматривать всего лишь как некий ориентир. Для уточнения конкретных параметров фрезерования следует пользоваться специальными таблицами и справочными данными.

Выбор инструмента

Главным образом это относится к его диаметру. В чем особенность подбора фрезы (все виды описаны здесь) по этому параметру?

    Повышение диаметра автоматически приводит к увеличению стоимости инструмента. Взаимозависимость двух показателей – если подача возрастает, то скорость резания падает, так как она ограничивается структурой обрабатываемой детали (см. ниже).

Скорость резания

В зависимости от материала образца можно ориентироваться на следующие показатели (м/мин):

    древесина, термопласты – 300 – 500; ПВХ – 100 – 250; нержавейка – 45 – 95; бронза – 90 – 150; латунь – 130 – 320; бакелит – 40 – 110; алюминий и его сплавы – 200 – 420.

Частота вращения фрезы

Простейшая формула выглядит так:

n (число оборотов) = 1000 Vc (желаемая скорость реза) / π D (диаметр фрезы).

Подача

На этот параметре фрезерования следует обратить пристальное внимание!

Долговечность фрезы и качество обработки заготовки зависят от того, какой толщины слой снимается за одну проходку, то есть при каждом обороте шпинделя. В этом случае говорят о подаче на 1 (2,3) зуба, в зависимости от разновидности инструмента (фреза одно- , двух- или трехзаходная).

Рекомендуемые значения подачи «на зуб» указываются производителем инструмента. Фрезеровщик по этому пункту режима резания сталкивается с трудностями, если работает с фрезами «made in China» или какого-то сомнительного (неизвестного) происхождения. В большинстве случаев можно ориентироваться на диапазон подачи (мм) 0,1 – 0,25. Такой режим подходит практически для всех распространенных материалов, подвергающихся обработке фрезерованием. В процессе реза станет понятно, достаточно или несколько «прибавить» (но не раньше, чем после 1-го захода). А вот менее 0,1 пробовать не стоит, разве только при выполнении ювелирной работы с помощью микрофрез.

Полезные советы

    Превышение значения оптимальной подачи чревато повышением температуры в рабочей области, образованием толстой стружки и быстрой поломкой фрезы. Для инструмента диаметром свыше 3 мм начинать следует с 0,15, не более Если скорость фрезерования детали повысить за счет оптимального использования возможностей оборудования не получается, можно попробовать установить фрезу двухзаходную. При выборе инструмента нужно учитывать, что увеличение длины режущей части приводит к снижению подачи и увеличению вибраций. Не следует стремиться повысить скорость обработки за счет замены фрезы на аналогичную, но с большим количеством зубьев. Стружка от такого инструмента отводится хуже, поэтому часто приводит к тому, что качество фрезерования резко снижается. В некоторых случаях, при полной забивке канавок, фреза начинает работать «вхолостую». Толку от такой замены никакого.

Вывод

Качественного фрезерования можно добиться только опытным путем. Конкретные станок + инструмент + практический опыт, навыки. Поэтому не стоит слепо доверять даже табличным данным. Например, в них не учитывается степень износа фрезы, с которой предстоит работать. Не нужно бояться экспериментировать, но начинать всегда следует с минимального значения параметров. Когда мастер «почувствует» и станок, и фрезу, и обрабатываемый материал, он сам определит, в каком режиме стоит работать.

Рекомендации при выборе режима

Идеально подобрать режим обработки практически невозможно, но есть ряд рекомендаций, которым желательно следовать:

  • Диаметр инструмента должен соответствовать глубине обработки. Это позволяет провести обработку в один проход, но для слишком мягких материалов есть риск снятия стружки большей толщины, чем необходимо.
  • По причине ударов и вибрации желательно начать с подачи порядка 0,15 мм на зуб и затем регулировать в большую или меньшую сторону.
  • Не желательно использовать максимальное количество оборотов, это может привести к падению скорости реза. Повысить частоту можно при увеличении диаметра инструмента.

Определение режима реза производится не только с помощью таблиц. Большую роль играет знание особенностей станка и личный опыт фрезеровщика.

Виды фрез для обработки кромок

Снятие стружки с углов, придание им рациональной формы, моделирование, разделение заготовки на части можно реализовывать с помощью шлицевых, угловых и фасонных фрезеровальных насадок:

  1. Отрезная и шлицевая имеет то же назначение, что и дисковая, однако чаще используются для надрезов и отделения лишних частей материала.
  2. Угловая необходима для кромок деталей и углов. Существуют одноугловые (лишь одна режущая часть) и двухугловые (режущими являются обе конические поверхности).
  3. Фасонная используется для сложных конструкций. Может быть полукруглой или вогнутой. Часто применяется для нарезания профиля метчиков, зенкеров, спиральных сверл.
Читать еще:  Как выбрать технологию производства пластиковых изделий: сравнение методов

Практически для всех типов возможна цельная стальная конструкция либо складная, с наличием вставных твердосплавных ножей. Твердосплавные фрезы имеют качественно более высокие показатели работы и ее продолжительности для инструмента в целом.

Вид фрезы: 1 или 2 лезвия?

В производстве рекламы чаще всего используются 1 и 2-заходные, реже 3-заходные фрезы. Четырех и с большим количеством лезвий фрезы не могут снимать толстую стружку в мягких материалах, и как правило, не используются. Основная их проблема при фрезеровании мягких материалов — это «запекание» в полостях фрезы. 1-заходные фрезы благоприятствуют лучшему выводу стружки за счет более просторного желоба фрезы. Специальные фрезы для алюминия имеют большой желоб. Особенно имеют преимущества при обработке мягкого алюминия, наряду с отполированным резцом, покрытие с Titan-Nitrid (TiN).

Выбор «идеального» типа фрезы всегда зависит от обрабатываемого материала:

При фрезеровке «мягких» материалов: мягких пластмасс (ПВХ, плексиглас, пенопласты), деревянных материалов (древесина, волокнистая плита, фанера, ДСП), мягких сортов алюминия и сэндвичей (алюминий / пластмассы) в выигрыше острые 1-заходные фрезы. Так как здесь проблема более скорого затупления предпочтительнее чем опасность засорения и поломки фрезы.
Для жестких пластмасс пригодны острые 2-заходные, с профилем рыбьего хвоста.
При обработке более жестких металлов таких как латунь можно рекомендовать 2-заходные фрезы с плоской заточкой.
При фрезеровке крайне жесткой конструкционной стали или совсем высококачественной стали, используют трех-четырех заходные фрезы.

Однозаходная фреза в поперечном разрезе
Один нож оставляет большое открытое пространство
для вывода стружки

Трехзаходная фреза в поперечном разрезе
Три лезвия существенно уменьшают пространство
для вывода стружки

Различия между фрезой и гравером
Многие используют понятие «Фреза» и „Гравер“ как синонимы. Тем не менее, речь идет о двух разных инструментах.
Гравер — это простой инструмент, разделенный пополам цилиндр, с последующей задней шлифовкой.
Форма может быть различна; наиболее распространены треугольные . В противоположность фрезам у них нет спиралевидного желоба для отвода стружки.

Материал фрез: HSS или твердосплавные ?
В рекламной технике преимущественно используются фрезы из твердого сплава.
Твердый сплав (HM) — дорогой, искусственный продукт, который агломерируется из мельчайших порошков (например, Wolfram-Carbid). В процесс агломерации сразу создается форма фрезы и в последствии не изменяется, (только затачивается). Твердый сплав крайне жесткий и износостойкий, однако, восприимчив к вибрациям и ударам. Важно при использовании фрез HM иметь стабильный, возможно более тяжелый и массивный станок, шпиндель с точным вращением и высококачественные цанги зажима. Фрезеруемый материал должен быть жестко и неподвижно зафиксирован на станке.
Быстрорежущая сталь (HSS) используется прежде всего, там, где твердый сплав слишком чувствителен: при фрезерной обработке нержавеющей листовой стали, на шатких машинах, или в случаях, когда жесткость фиксации недостаточно обеспечена. HSS значительно быстрее снашивается, но угроза преждевременной поломки меньше, по причине ее вязкости.
Жизнь HSS фрезы с покрытием значительно увеличивается. Например, для нитрида титана (TiN) срок службы увеличивается в шесть раз.
Titan-Nitrid существенно жестче чем HSS, а также жестче чем HM. С Titan-Nitrid покрытием инструменты HM служат также дольше, хотя различие в твердости незначительное.
Более значительно покрытие отражается на число оборотов и подачу. Ее можно увеличивать и укорачивать таким образом время обработки. При фрезеровке алюминия TiN предотвращает внушающее страх запекание алюминия во фрезе. Покрытие действует как тефлон в сковороде (стружка скользит)

Число оборотов и оптимальная подача

Принципиально считается: Чем выше скорость резания (vc = p * d * n), тем более гладкой будет поверхность. Однако, затупление фрезы тоже растет с увеличением скорости разания.

Процедура расчета:

1. Число оборотов n:
Выберите скорость разания vc из таблицы. (Если скорость резания материала сильно варьируется, уточните в справочниках).
На основании данных вычислите число оборотов шпинделя

n [U/min] = (vc [m/min] *1000) / (3.14 * d [mm])

2. Подача f:
Выберите рекомендованную подачу на каждый зуб (коэффициент fz) с использованием той же таблицы и отсюда вычислите подачу:

f [mm/min] = n * fz * z
fz = подача на 1 зуб
z = количества лезвий

Пример:
Вы хотите фрезеровать 2-заходной фрезой, диаметром 3 мм жесткий алюминий. Из таблицы Вы находите: vc = 100. 200 м / мин. Из этого Вы рассчитываете:

Макс. число оборотов: n = (200 * 1000) / (3.14 * 3) = 200 000 / 9.42 = 21.230 U/min
Соответствующая подача: f = 21230 * 0.04 * 2 = 1698 mm/min

Высокая скорость подачи — особенно в металлах — требует стабильной и бесшумной машины. Кроме того, глубина паза не должна быть слишком большой (около 1 * d 1).
Для менее стабильных машин или при повышеной глубине фрезеровки режим расчитывается следующим образом:

Макс. число оборотов:
n = (200 * 1000) / (3.14 * 3) = 200 000 / 9.42 = 21.230 U/min (как выше)
Миним. число оборотов: n = (100 * 1000) / (3.14 * 3) = 100 000 / 9.42 = 10.615 U/min
Соответствующая подача (минимальная): f = 10615 * 0.04 * 2 = 849 mm/min

Вы комбинируете n=21230 U / min и f = 849 mm/min.

Справочник зубореза — Страница 11

Схемы фрезерования.

Зубофрезерование, как и другие виды фрезерования, можно осуществить по схеме встречного или попутного фрезерования.

При встречном фрезеровании направление скорости резания противоположно (встречно) направлению подачи заготовки (рис. 24, а). Подача осуществляется сверху вниз. Зуб фрезы в начале резания срезает тонкую стружку, наибольшая ее толщина достигается при выходе зуба фрезы из заготовки.

При попутном фрезеровании, направление скорости резания совпадает (попутно) с направлением подачи заготовки (рис. 24, б). Подача осуществляется снизу вверх. Зуб фрезы начинает срезать стружку при наибольшей ее толщине.

В современных зубофрезерных станках предусматривается возможность попутного фрезерования, позволяющего повысить скорость резания на 20—25%, увеличить стойкость фрезы, более равномерно нагружая ее зубья, и уменьшить шероховатость поверхности нарезаемых зубьев.

Рнс. 24. Схемы зубофрезерования:

а — встречное; 6 — попутное; 1 — подача фрезы; 2 — направление скорости резания

Диагональное зубофрезерование.

Диагональное зубофрезерование заключается в том, что для обеспечения более равномерного износа фрезы вдоль зубьев и повышения ее стойкости наряду с вертикальной подачей фреза имеет периодическую или непрерывную осевую подачу. Для этого зубофрезерные станки оснащают соответствующими механизмами. На станках мод. 5К32 можно осуществить диагональное нарезание прямозубых колес дополнительной настройкой гитары осевой подачи фрезы и дифференциала. Более подробно этот метод описан в различных работах; например, Лоскутов В. В., Ничков А. Г. Зубообрабатывающие станки. М.: Машиностроение, 1978.

Качество обработки.

При нарезании колес червячными фрезами на зубофрезерных станках общего назначения без дополнительной отделки могут быть достигнуты 6—7-я степени точности (по ГОСТ 1643—81) при условии применения прецизионных фрез, особо точной установки фрезы и детали. При работе в обычных условиях достигаются 8—9-я степени точности по ГОСТ 1643—81.

Причины погрешностей колес при нарезании на зубофрезерных станках приведены в табл. 15.

15. Источники погрешностей зубчатых колес при нарезании их на зубофрезерных станках

Читать еще:  Линия по производству саморезов: Выбираем станки и начинаем!

Примечания: 1. Влияние точности установки инструмента и заготовки не учтено.

2. Знак «+» означает, что погрешность станка и инструмента влияет на точность нарезаемого колеса по указанному показателю.

Параметр шероховатости боковых поверхностей зубьев, нарезанных червячной фрезой, от Rz = 10-40 мкм до Ra = 2,5-2,0 мкм (по ГОСТ 2789—73*). Он зависит от обрабатываемого материала, состояния инструмента и станка, смазочно-охлаждающей жидкости, режимов резания (главным образом от подачи) и модуля. При обработке червячными фрезами неизбежна огранка в результате формирования зуба колеса рядом последовательных резов и волнистость боковой поверхности зуба с шагом, равным подаче Sо. Огранку и волнистость можно определить по графикам, приведенным на рис. 25.

Рис. 25. Номограмма для расчета:

а — высоты огранки hг; б — высоты волнистости hs (сплошные линии — однозаходный инструмент; штриховые — двухзаходный инструмент)

Припуск на чистовое нарезание равен (0,1—0,15). В некоторых случаях при изготовлении менее точных колес с модулем до 5 мм или при обработке с последующим шевингованием зубья можно фрезеровать за один проход.

При изготовлении колес в ряде случаев чистовую обработку зубьев ведут на специальных станках.

Основное время (в мин) одного прохода при нарезании колес червячной фрезой определяют по формуле:

где В — ширина нарезаемого венца, мм; l — глубина врезания фрезы, мм; l1 — перебег, мм; ZR — число нарезаемых зубьев; n — частота вращения фрезы, об/мин; So — осевая подача фрезы на оборот стола, мм/об; k — число заходов фрезы; L — общая длина хода фрезерного суппорта, мм; Sm — минутная подача фрезы, мм/мин.

Глубину врезания для прямозубых колес определяют по формуле:

где De — диаметр фрезы, мм; t — глубина фрезерования, мм.

Перебег l1 для прямозубых колес обычно принимают равным 3—5 мм, для косозубых колес l1 = Зm tg (BПи — w) + (З-5) мм. Значения глубины врезания и перебега червячных фрез приведены в табл. 16.

Для снижения времени врезания рекомендуется производить не осевое, а радиальное врезание (сближение фрезы и заготовки в процессе резания до требуемой глубины фрезерования с последующим переключением станка на осевую подачу). Основное время можно определить после назначения режимов резания.

Стойкость фрезы и режимы резания.

Червячные фрезы изнашиваются по задней поверхности зубьев, на которой появляется фаска износа (рис. 26). Изношенные фрезы перетачивают по передней поверхности зубьев, а в случае большого износа зубья перешлифовывают по всему профилю. Поэтому во избежание чрезмерного расхода инструмента и повышения трудоемкости переточек износ не должен превышать допускаемых значений.

Рис. 26. Износ зуба червячной фрезы:

1 — по задней поверхности; 2 — по боковой поверхности; 3 — по передней поверхности; б — наибольшая ширина фаски износа

При чистовых операциях от износа фрез зависит точность нарезаемых колес и шероховатость поверхности зуба. Рекомендуемые значения износа даны в табл. 17.

17. Износ фрез, мм

При чистовой обработке колес 6-й степени точности и точнее допускаемый износ не должен превышать 0,05 мм.

Стойкость Т фрезы — основное (машинное) время ее работы между переточками — зависит от обрабатываемого материала и режимов резания. Если фактическая стойкость инструмента велика, это значит, что режимы резания занижены, следовательно, производительность операции занижена. При слишком малых значениях стойкости расход инструмента возрастает ввиду частых его переточек, и повышаются затраты времени на его замену. Рекомендуются следующие значения стойкости червячных фрез:

Модуль, мм . , 4 б 8 12 >16 и более
Стойкость Т, ч . 4 б 8 12 16

Во время чистового прохода замена фрезы недопустима. Следовательно, стойкость фрезы должна быть не менее машинного времени, требуемого для чистовой обработки одного крупного колеса.

Фреза изнашивается неравномерно по длине, а часть зубьев, не участвующая в резании, не изнашивается совсем. Поэтому стойкость фрезы может быть повышена за счет ее осевых перемещений (рис. 27, табл. 18), при которых вводятся в работу незатупленная и малозатупленная части фрезы. Расстояние Л, соответствующее начальной установке фрезы, принимают равным 1,4 В при нарезании прямозубых колес и 2 В при обработке косозубых колес.

Рис. 27. Схема осевых перемещений червячной фрезы

1 — направление перемещения фрезы.

При чистовой обработке число возможных переточек в 2-3 раза больше. Числа возможных переточек червячных фрез в зависимости от модуля указаны в табл. 19.

Эти данные рассчитаны исходя из того, что при переточках зуб фрезы может быть срезан на величину, равную 0,3 окружного шага фрезы.

19. Число переточек червячных фрез

Режимы резания определяют в следующей последовательности: выбирают стойкость фрезы, число4 проходов и подачу; определяют скорость резания и частоту вращения фрезы; проверяют мощность резания и определяют основное время.

Выбор стойкости фрезы. При заданном инструменте наибольшее влияние на фактическую стойкость фрезы оказывает твердость материала обрабатываемой заготовки, скорость резания, подача, модуль и припуск.

В целях повышения производительности операции при заданной стойкости инструмента выгодно увеличивать подачу, соответственно снижая скорость резания.

Выбор числа проходов (глубины фрезерования). Полную обработку зуба следует производить не более чем на два-три прохода. Если ввиду недостаточной мощности или жесткости станка приходится производить два черновых прохода, то глубину фрезерования принимают обычно при первом проходе t= 1,4 m, при втором t = 0,8 m. При черновом проходе желательно прорезать впадину почти на всю глубину (для этого необходимо применять черновую фрезу с зубьями уменьшенной толщины), чтобы чистовая фреза лишь слегка работала наружными режущими кромками. При фрезеровании колес с последующим шевингованием или шлифованием обычно применяют обработку за один проход.

Припуск на толщину зуба следует оставлять минимальным, чтобы при чистовом проходе были обеспечены требуемые точность и шероховатость поверхности зуба. Припуск выбирают в зависимости от диаметра нарезаемого колеса, обычно он равен (0,1—0,15) т, В некоторых случаях для повышения качества обработки колес больших модулей указанный припуск срезают за два чистовых прохода (после одного чернового прохода).

При чистовом зубофрезеровании крупномодульных колес припуск можно определить по табл. 20.

20. Глубина резания при чистовом зубонарезании червячной фрезой

Выбор подачи. Для обеспечения более высокой производительности следует работать с возможно большими подачами. При черновом проходе подача обычно ограничивается ввиду вибрации фрезерного суппорта, возникающей при недостаточной жесткости системы станок-деталь—фрезы, а при чистовом — шероховатостью поверхности нарезаемых зубьев.

В зависимости от жесткости станка (табл. 21) и модуля иарезаемого колеса, а также от материала, конструкции фрезы и наклона зуба по табл. 22 можно выбрать подачу для чернового нарезания. Для чистового нарезания подачу можно выбирать по табл. 23.

Скорость резания определяют исходя из ранее принятых значений подачи и стойкости, с учетом свойств обрабатываемого материала, модуля колеса и других условий работы. В табл. 24 приведены значения скорости резания, рассчитанной по формуле

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector