Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Блок питания для шуруповерта: 5 вариантов продления жизни прибора

Главное преимущество аккумуляторных шуруповертов — мобильность, позволяющая не зависеть от сети. Такие широкие возможности для эксплуатации стали причиной их популярности, однако за эту кажущуюся практичность хозяевам спустя несколько лет приходится расплачиваться. Причина — относительно быстрый выход батареи из строя, особенно если инструмент используется владельцами постоянно. Покупка нового аккумулятора не слишком привлекательный вариант из-за его высокой цены, поэтому многие приходят к логичному решению — создают полноценный блок питания для шуруповерта самостоятельно. В этом случае в жертву приносят возможность работать в любом труднодоступном месте, зато появляется шанс использовать электрическую «отвертку» на полную мощность.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «

», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Блок питания для автомагнитолы

У вас ведь по-любому завалялась старая магнитола где-нибудь в гараже?

Почему бы не сделать музыку в гараж?

Техническое задание

Да, вопрос решается с помощью небольшого автомобильного аккумулятора. Но его работа ограничена по времени, да и заряжать его каждый раз – ну уж извините. Поэтому в данной статье пойдет речь о том, как же собрать своими силами простейший высоко стабилизированный блок питания для магнитолы, работающий от сети 220 Вольт.

Итак, наша главная задача – получить из переменного напряжения 220 Вольт, которое у вас в розетке, постоянное напряжение в 14 Вольт. Думаю, задача ясна и понятна. Но есть маленькое НО: магнитола + колонки + громкость на всю катушку = очень энергопотребляемое устройство. Она у нас будет “кушать” силу тока в несколько Ампер. По моим замерам среднее значение – это 1,5-2,5 Ампера, а при глубоком басе и все 5 Ампер. Все зависит от того, как вы выставите эквалайзер на магнитоле.

Читать еще:  Управление техническими системами Задание №З-201.04 — станок 16К20Ф3

Следовательно, нам надо создать такое устройство, которое бы держало напряжение в определенном диапазоне – то есть от 13 и до 14 Вольт и выдавало приемлемую силу тока.

Схема и описание

Итак, схему в студию!

Но… подождите-ка. Чем-то напоминает эта схема ту самую схему Простого блока питания. Ну да, это и есть та самая схема ;-). Просто здесь есть свои нюансы. Главным козырем в этой схемы является регулятор стабилизатор LM350 или LM338. В чем же фишка этих стабилизаторов? И почему мы заменили старую добрую LM317?

Итак, ищем даташиты (это технические описания радиодетали) на стабилизаторы LM317,LM350 и LM338. Я знаю, что вы все лентяи, так что я за вас уже постарался и нашел их главные параметры:

LM317 – может выдать силу тока в нагрузку, и при этом не колыхнуть ярким пламенем, где то 1,5 Ампера. Не… это маловато.

LM350 – может выдать в нагрузку силу тока в 3 Ампера. Ммм, уже лучше.

LM338 – может выдать в нагрузку ток порядка в 5 Ампер! Ну это уже реально мощная штука!

Но опять же есть одно но: все стабилизаторы должны устанавливаться на радиатор, иначе они сдохнут от перегрева. В даташите пишут, что они защищены от короткого замыкания и перегрева, но я что-то все равно не доверяю этим защитам. Если уж коротнет при силе тока в 5 Ампер, микросхема улетит на тот свет к горелым транзисторам.

Для мощных блоков питания потребуется мощный диодный мост. Поэтому лучше взять диодный мост КВРС5010

который можно дешево купить на Али по этой ссылке. Если все-таки душит жаба, то можно собрать из мощных диодов, которые все равно придется покупать, что обойдется дороже.

Моя сборка

Настало время проверить все это дело на практике. Думаю, вы сами понимаете, что блоки питания я собирал из подручных материалов. Первым делом я нашел будущую заготовку под плату и выдрал оттуда все лишние радиодетали.

Очень кстати оказались четыре диода, те что слева внизу, два конденсатора приличной емкости и радиатор вверху справа. Как раз, то что нам надо!

Итак диоды КД203А. Можно любые другие, лишь бы выдерживали проходящую через них силу тока. Плату я переделывать не стал и оставил эти диоды.

Два конденсатора. Один на 2000мкФ, а другой на 100мкФ. В принципе, чем больше по емкости конденсатор после диодного моста, тем лучше. 2000 мкФ, думаю, будет вполне достаточно. Смотрим, чтобы напряжение на конденсаторах не превышало напряжение, которое на них написано. В моем случае я взял конденсаторы, которые могут спокойно работать в цепях до 50 Вольт.

Следующим шагом надо подобрать МОЩНЫЙ (!) трансформатор на 220—–>15-25 Вольт. Не вздумайте ставить туда трансформатор от ваших радиоприемников, китайских игрушек и прочей мелкой аппаратуры. Короче говоря, чем больше трансформатор по габаритам, тем лучше. У нас на работе куча этих трансформаторов, поэтому, вопрос с подбором нужного трансформатора сразу отошел в сторону:

Первым делом смотрим на паспортные данные трансформатора. Итак, тут все элементарно и просто. Там, где больше всего витков и есть первичная обмотка. Далее подключаем эту первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичных обмотках. Смотрим, где есть напряжение, которое нас устроит (ну то есть от 15 и до 25 Вольт).

Трансформатор подобрали. Теперь осталось подобрать микросхему. Так как этот блок питания я делал на небольшие колонки, значит, магнитола будет кушать мало силы тока. Думаю, не более 3 Ампер. Поэтому, будем использовать стабилизатор LM350:

Тщательно подготовим ему место. Для этого берем мелкозернистую шкурку нулевку и зачищаем место для нашего стабилизатора.

Смазываем LM-ку теплопроводящей пастой КПТ-8

Зажимаем ее на радиатор. На этом самый трудный процесс закончен 😉

Потом берем в руки паяльник и навесным монтажом спаиваем схему. Через часик у нас плата превращается в мощный блок питания! После получения нужного напряжения на выходе схемы с помощью переменного резистора, я паял туда постоянный резистор

На выходе получилось где-то 13,7 Вольт. Думаю, этого вполне хватит, чтобы раскачать пару небольших колонок.

Давайте попробуем зажечь лампу на 12 Вольт

Подаем на нее напряжение и вуаля!

Ну все, цепляем магнитолу к блоку питания.

Для тех, кому хочется мощнее

Но что если вам захотелось сделать автопати с корешами прямо в гаражном кооперативе? Разумеется, вы уже не будете раскачивать маленькие колонки, а следовательно, нужен мощный блок питания. Для этих целей как раз потребуется стабилизатор LM338, но к нему в придачу также нужен и приличный увесистый трансформатор. Напряжение лучше все-таки выставлять в пределах 14 вольт, так как при громкой музыке оно будет проседать. Все, конечно же, зависит от трансформатора и от басовых колонок. Про то, почему проседает напряжение, можно почитать в статье работа трансформатора.

Я сделал таких 4 блока питания. Один блок питания раскачивает магнитолу с басовыми динамиками, другие раскачивают тоже приличные колонки. А не проще ли было использовать простой выпрямитель, с которым заряжают аккумуляторы? На некоторых выпрямителях, особенно на самопальных, напряжение имеет пульсации, что в конечном итоге и повлияет на качество звучания. В динамиках будет слышен фон. Фон – это посторонний звук, который мешает звучанию. А наш блок питания имеет на выходе чистое постоянное напряжение, поэтому звук у нас будет чистый и мощный 😉

Готовые модули на Алиэкспрессе

В настоящее время уже ничего не надо придумывать. Достаточно купить готовый модуль и на его базе собрать блок питания для магнитолы. Такой модуль стоит от 4$ и по качеству и энергозатратам будет даже лучше, чем вышеописанный блок питания:

Глянуть и купить можно по этой ссылке.

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Принципиальная схема бестрансформаторного блока питания

Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

Читать еще:  Сделай Сам (Знание) 2011-03, страница 117

Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.

Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

Видео работы схемы бестрансформаторного БП

Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Фильтрующий конденсатор

Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«

Ниже на рисунке показана схема, и уровень пульсаций в каждой точке

В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.

Схема трансформаторного блока питания шуруповёрта

Напоследок сделаем своими руками трансформаторный блок питания для шуруповёрта 12, 14 или 18 В. Такой источник, конечно, будет достаточно громоздким, но прелесть конструкции заключается в её простоте. С повторением схемы справится и начинающий радиотехник, имеющий лишь общие знания по электротехнике.

Для этого самодельного блока питания понадобится трансформатор, способный выдать необходимый нам ток при напряжении 12–13 В (для 12-вольтового инструмента), 14–16 В (для 14-вольтового) или 18–20 В для 18-вольтового инструмента. Ещё придётся найти 4 мощных выпрямительных диода и несколько электролитических конденсаторов.

Если у нас шуруповёрт на 12 вольт, потребляющий ток до 10 А (большинство бытовых), то можно взять унифицированный анодно-накальный трансформатор ТАН-138-127/220-50 (ТАН-138 220-50), имеющий 2 обмотки по 6,3 В при токе 10 А. Весит он, правда, более 6 кг.

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Следующий на очереди — двуполярный трансформаторный блок питания

Здесь используется трансформатор с двумя одинаковыми вторичными обмотками, соединенными последовательно (или это может быть одна обмотка со средней точкой). В этом случае средняя точка объявляется «землей», а с фильтров снимается напряжение как положительной, так и отрицательной полярности (измерения, разумеется, относительно «земли». И логично, что между «плюсом» и «минусом» 2Uвых).

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: магнитофон «Вильма М-212С», усилитель «Радиотехника У-101», осциллограф «С1-94».

Это слайд-шоу требует JavaScript.

Диодный мост работает точно так же, как и в случае однополярного блока питания. Попеременно открываясь, то одна, то другая пара диодов пропускает переменное напряжение к конденсаторам фильтра.

К достоинствам двуполярного БП можно отнести:

-Значительное упрощение схем с операционными усилителями (исключаются цепочки, создающие «искусственный ноль» на входе — достаточно сравнить первую и вторую схемы отсюда).
-Уменьшение количества межкаскадных емкостей, так как в большинстве случаев постоянная составляющая сигнала отсутствует. А все мы знаем, что «электролиты» имеют свойство пересыхать.
-Акустика, подключенная к выходу исправного и настроенного усилителя с двуполярным питанием, не будет хлопать при включении, так как на выходе нет постоянной составляющей и конденсатора, блокирующего ее.

Однако есть и определенные недостатки:

-Снова повышенное падение напряжение на выпрямителе.
-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-Устройство чувствительно к перекосу плеч питания — например, если в звуковоспроизводящей технике при номинальных +/-14 вольт де-факто будут +12 и -16, форма выходного сигнала может сильно исказиться относительно нуля.
-«Исправный и настроенный усилитель», став вдруг неисправным, может выжечь акустику постоянным напряжением на выходе: нужна схема ее защиты при аварии.

Как следствие, такие блоки питания прижились в стационарной аппаратуре, где нет нужды в батарейном питании.

Реинкарнация компьютерных БП. Часть 1

Те, кто уже имел дело с силовыми трансформаторами компьютерных БП, знают, что первичная обмотка трансформатора содержит около 40 витков провода, разделенных, как правило, на 2 секции, наматываемых до и после вторичной обмотки. Таким образом достигается уменьшение паразитной емкости первичной обмотки и усиливается индуктивная связь между обмотками, что важно для ШИ-возможностей БП. Суммарное же количество витков вторичных полуобмоток — 7 (3+4). Таким образом, коэффициент трансформации штатного трансформатора приблизительно равен 5,7. Для полумостовой схемы преобразователя амплитуда прямоугольных импульсов будет равна половине питающего напряжения преобразователя, т.е. — 220Х1,4/2=154В (пренебрегая падением напряжения на К-Э-переходах транзисторных ключей).

Это значит, что действующее значение «переменки» на выходе трансформатора составит приблизительно 27В. Значение выходного напряжения первой части полуобмоток (первые 3 витка от средней точки) — 11,5В. Выпрямив полученные напряжения, получим «постоянку» с приблизительными значениями, соответственно, 38 и 16 Вольт. Габаритная мощность магнитопроводов трансформаторов современных и чуть менее современных компьютерных БП составит не менее 250Вт на частотах преобразования от 30кГц. Это значит, что при расчетных выходных напряжениях мы можем расчитывать на выходной ток от 6,5 Ампер. Впечатляет? Причем все ЭТО можно получить при простой схемотехнике и незначительных усилиях при конструировании, учитывая, разумеется, отсутствие такого сервиса, как стабилизация выходных напряжений, например. А во многих случаях стабилизация и не нужна. Взамен получаем мощность, приемлемый набор выходных напряжений, позволяющий использование возрожденного БП в широком диапазоне задач (от построения лабораторного БП до питания мощных усилителей) компактность, малый вес. А эти показатели перекрывают такой минус, как отсутствие стабилизации.

Читать еще:  КГШП (кривошипный горячештамповочный пресс): характеристики и особенности

У трансформаторов компьютерных БП есть один большой плюс, помимо уже замеченных в этом тексте, — стандартный установочный профиль. Это обстоятельство делает задачу разработки универсальной схемы с применением тр-ов от разных БП очень простой, равно, как и разработку печатной платы для этой схемы. Это значит, изготовление БП с подобными трансформаторами можно поставить на поток, не взирая на габаритные и мощностные различия трансформаторов. Еще один плюс силовых трансформаторов компьютерных БП — высокая надежность, обусловленная применением качественных современных ферритов, эпоксдной пропиткой, избыточным сечением обмоточных проводов. Никто из тех, кому доводилось ремонтировать компьютерные БП, не сможет, пожалуй, припомнить гибель такого трансформатора. И еще — трансформатор можно легко экранировать полоской фольги, создав КЗ-виток вокруг самого трансформатора.

Задача проста. Схема должна быть максимально простой и повторяемой при использовании трансформаторов от разных БП. Для этой цели попробуем применить трансформатор в схеме двухтактного полумостового автогенераторного преобразователя, так полюбившегося производителями электронных трансформаторов (Рис 1а) с любым из узлов запуска (Рис 1б — рис 1г).

Проще схемы, пожалуй, не бывает.

До сборки схемы по рис 1а необходимо намотать коммутирующий (управляющий) трансформатор на ферритовом кольце размером 10Х6Х3мм (наружный диаметр Х внутренний диаметр Х высота) или другом, имеющим близкие габариты из материалов 1000/1500/2000/3000НН. Можно попробовать и другие размеры и марки феррита, но следует учесть, что размеры бОльшие, чем те, что указаны, могут значительно снизить частоту коммутации, а то и вовсе привести к неспособности трансформатора к насыщению. При этом габариты трансформатора должны обеспечивать определенную мощность для создания в его обмотках тока, достаточного для открывания транзисторов. Кроме того, габариты трансформатора должны обеспечить и достаточное пространство для размещения необходимого количества витков. «Базовые» обмотки могут содержать от 3 до 10 витков медного провода диаметром не менее 0,3мм в эмалевой или любой другой изоляции. Возможно использование одножильного монтажного провода с жилой указанного диаметра. Таким же проводом наматываем и обмотку связи — 1-10 витков.

Обмотка связи в виде 1-4 витков провода делается и на «компьютерном» трансформаторе. Практически в любом трансформаторе найдется зазор между имеющимися обмотками и боковыми частями магнитопровода для нескольких дополнительных витков провода казанного сечения.
Собираем макет электрической схемы преобразователя (рис 2, рис 3), подпаиваем к схеме выводы


«компьютерного» трансформатора; к выводам его вторичной обмотки подпаиваем нагрузочный резистор, обеспечивающий небольшую, до 10Вт, потребляемую мощность (но можно и без нагрузки); параллельно любой из вторичных обмоток подключаем осциллограф и через лампу накаливания мощностью 150-200Вт подключаем схему к сети. Увидев на дисплее осциллографа импульсы правильной прямоугольной формы

и не заметив свечения нити балластной лампы, понимаем, что преобразователь — работает. Выключаем, проверяем на нагрев радиатор, на котором закреплены транзисторы (MJE13007), трансформатор. Если все эти предметы не изменили своей температуры за несколько секунд проверочного включения относительно той, что была до включения, то — продолжаем эксперементировать.

Измеряем частоту преобразования и при необходимости подбираем ее значение с помощью подбора витков обмоток связи одного из трансформаторов и резистора R3 (рис 1а). При подборе частоты указанными манипуляциями следует учесть, что при увеличении витков обмотки связи трансформатора Tr2, частота преобразования будет снижаться, а ток через резистор R3 — возрастет. Увеличение числа витков обмотки связи на Tr1 так же будет способствовать снижению частоты, равно. как и уменьшение сопротивления резистора R3. Оптимальным следует считать режим преобразования с частотой равной или большей той частоты, при которой трансформатор эксплуатировался в исходном БП. Т.е. — от 30-35кГц. Преобразователь, собранный по схеме на рис 1а, работает уверенно и на более низких частотах. Правда, продолжительность испытаний не превышала получаса для каждого варианта (см таблицу 1), а мощность нагрузки не превышала 55Вт.

При указанных в таблице 1 изменениях номиналов деталей и обмоточных данных, нагрев транзисторов, установленных на радиаторе в макете (на рис 2, 3) не превышал 40 градусов при получасе работы. Нагрев существенно может быть снижен достижением оптимального количества витков обмоток связи обоих трансформаторов. Эта же мера снизит разогрев и резистора R3. Правильный подбор витков будет способствовать и общей стабильности схемы. При испытаниях умышленно было выбрано неверное соотношение витков. О хорошем и правильном — в продолжении.

А результаты испытания ЭТОЙ схемы с трансформатором из компьютерного БП показали следующее.
1. Действующие напряжения вторичных обмоток трансформаторов (а испытывались четыре различных трансформатора от разных БП) оказались несколько выше расчетных: 11,8 — 13,6В (пятивольтовая полуобмотка разных тран-в), 28-30,5В — (двенадцативольтовая полуобмотка).

Как видно, схема — все та же, но в качестве ключей применены мощные полевые транзисторы. Выбраны были IRFP460A, т.к. просто оказались в наличии именно эти транзисторы. Обмотки коммутирующего тр-ра, разумеется, намотаны уже несколько иначе, т.к. порог открывания полевых транзисторов — 5-12В. Затворные обмотки коммутирующего трансформатора и обмотка связи содержат одинаковое количество витков — по 20 — медного провода в диаметром 0,3 в эмали. Перед наматыванием провода в эмалевой изоляции, не лишним будет окунуть магнитопровод в клей («момент» или «БФ-2») для создания изоляционного слоя поверх проводящего, в общем-то, материала магнитопровода. Габариты кольца такие-же, как и у трансформатора из предыдущей схемы. Количество витков обмотки связи силового тр-ра так же придется увеличить (3-4 витка) для создания необходимого напряжения на обмотке связи тр-ра Tr1.

Фото макета на рис 4, 5.


3. Резисторы обратной связи R3 практически не нагреваются, каких бы номиналов они ни применялись при испытании. Это обстоятельство позволяет применить в качестве R3 маломощные (от 0,25Вт) резисторы.

4. Практически отсутствует нагрев ключей. Это значит, что и площадь охлаждающих радиаторов может быть относительно небольшой, а устройство в целом — более компактным.
5. ЭТА схема по своим свойствам сопоставима со схемой на на полумостовом драйвере типа IR2151-IR2153, но имеет более высокий КПД за счет отсутствия цепей питания самого драйвера; схема меньше уязвима и менее требовательна к компоновке в отличии от схемы со специализированным драйвером.

Надеюсь, статья поможет многим переосмыслить собственные взгляды на старые компьютерные БП и сэкономить при создании таких несложных и нужных БП.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector