Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ЧПУ — виды, подключение, схемы

ЧПУ — виды, подключение, схемы.

Станки с ЧПУ не имеют определенную общую классификацию, но каждый станок имеет свою особенность коротая и отличает его от других. Главные показатели, от которых на прямую зависят виды классификации – это:

  • Виды выполняемых работ;
  • Точность выполнения;
  • Универсальность;
  • Шпиндель (размещение- горизонтальное, вертикальное);
  • Габариты и вес;
  • Уровень автоматизации.

Самые распространенные станки с числовым программным управлением можно классифицировать в зависимости от того, для каких видов работ они предназначены. В данном списке виды ЧПУ расположены в зависимости от популярности по убыванию. И так, станки с ЧПУ различаются на:

  • Токарные;
  • Фрезеровочные;
  • Сверлильные;
  • Гибочные;
  • Пробивные;
  • Лазерно-гравировальные;
  • Режущие (плоттеры);
  • Координатно-расчетные.

Главное отличие станков с ЧПУ от своих собратьев, не оснащенных числовым программным управлением это высокая точность. Но даже станки с ЧПУ имеют различные показатели точности, в зависимости от модели. Точность обозначается буквенной маркировкой, причем отечественная маркировка точности ЧПУ отличается от иностранных.

Отечественная маркировка точности станков с ЧПУ:

  1. Н – нормальная;
  2. П – повышенная;
  3. В – высокая;
  4. А – особо высокая;
  5. С – максимально высокая.

Иностранная маркировка точности станков с ЧПУ:

  1. Стандартная точность не маркируется;
  2. H – высокая;
  3. P – прецизионная;
  4. SP – супер-прецизионная;
  5. UP – ультра-прецизионная.

Принципиальная схема ЧПУ. Описание.

Приступим к описанию схема ЧПУ станка. Если лень читать, то посмотрите видео на канале железкин электроника ЧПУ станка .Схема.В схеме для управления станком с ЧПУ используется интерфейсная плата ЧПУ синего цвета. Но возможно применение и другой подобной этой плате. Так как практически все они одинаковые. Возможно, и даже лучше если вы найдёте плату без оптронов на выходе. То есть выхода платы для подключения драйверов без оптронов. Потому что как раз вот эта развязка и влияете на пропуск шагов. Но вы учтите, что вход LPT порта должен быть развязан с компьютером через оптроны.

Я использовал в своём станке драйвера шагового двигателя TB6600. Потому что это не дорогие и не плохие драйвера. Лучше конечно поискать что то другое. Но на тот момент я не имел достаточно средств.

На схеме я всё понятно нарисовал как подключать драйвера. Поэтому на этом не будем останавливаться. В качестве блоков питания я использовал уже готовые источники. Но приведённые на схеме блоки питания вполне работоспособны. Источники 5 вольт и 12 вольт должны длительное время держать токи 1 ампер и 500 ма соответственно. Для питания шаговых двигателей не менее трёх ампер. Лучше посмотрите параметры на свои шаговые двигатели. Внимание! Минусовые провода +5 в и +12 не соединять вместе. Так как они должны быть гальванически развязаны. +5 это питание микросхем платы. А +12 вольт необходимо для питания оптронов на входной колодке и ШИМ. К которой подключаются концевики и другие входные устройства.

Подключение частотника к плате не требует объяснения. Так как всё понятно из схемы. Но учтите, что все частотные преобразователи разные и перед подключением посмотрите паспорт. По оси Y я использую два шаговых двигателя. Но подключил я оба двигателя к одному драйверу. Смотрите схему, на которой все цвета соответствуют подключению.

Особенности электросхемы фрезерного станка 6Р82

Попробуем разобраться с электросхемой горизонтального консольно-фрезерного cтанка 6Р82. Она представлена следующими блоками:

  • питающей сетью с напряжением 380 В, переменным током с частотой 50 Гц;
  • цепями управления с напряжением 110 В (переменный ток); 65 В (постоянный ток);
  • местным освещением с напряжением 24 В;
  • номинальным суммарным током одновременно работающих электродвигателей 20 А и номинальным током устройств защиты 63 А.
Читать еще:  Как и чем нарубить дрова и нарезать щепу: 7 традиционных и современных приспособлений

В технической документации сформулированы пределы использования оборудования на станке относительно мощности и силовых нагрузок. Если шпиндель агрегата совершает больше 63 об/мин, то пределы использования главного привода ограничивает лишь номинальная мощность электродвигателя.

Нужно назвать и основные компоненты электросхемы фрезерных станков: ШД с драйверами, платы интерфейса, компьютеры или ноутбуки, блоки питания и кнопка для аварийной остановки станка.

Самодельный ЧПУ станок

Разделы сайта

  • Самодельный ЧПУ станок
  • 3D принтер
  • Чертежи 3D принтеров
  • Чертежи ЧПУ станков
  • 3D модели
  • Механика
  • Электроника
  • Книги по ЧПУ
  • Софт для ЧПУ станка
  • Обзоры
  • Видео
  • Лазерные граверы

Интересное предложение

Лучшее

  • Домашний 3D принтер
  • Простой контроллер для ЧПУ станка
  • Самодельный ЧПУ станок моделиста
  • Чертеж самодельного ЧПУ станка
  • Самодельный ЧПУ станок из МДФ

Статистика

Скачать схему электроники для самодельного ЧПУ станка можно по ссылкам в конце статьи.

Механическая часть самодельного ЧПУ станка собранного своими руками может вызывать гордость, но без электронных «мозгов» механика не будет работать.

Обычно я рекомендую использовать готовые комплекты от purelogic.ru, такой набор включает комплект электроники для ЧПУ станка — контроллер, источник питания, 4 шаговых двигателя, LPT кабель и 4 концевых датчика.

Но в последнее время цены на них подросли и начинаются от 9 тысяч рублей, а для самодельного ЧПУ станка собранного из подручных материалов, такая цена становиться неприемлемой.

К тому же в качестве источника питания для самодельного ЧПУ станка прекрасно подходит блок питания от компьютера.

Зато готовая плата позволяет не тратить время на сборку электроники и использовать проверенный и работоспособный вариант.

Я к паянию радиодеталей равнодушен, максимум что готов сделать – это спаять пару проводов или починить схему заменой парой деталей. Изготавливать плату контроллера начиная от травления схемы до сверления отверстий под ноги деталей, пропайкой деталей и кончая наладкой электроники мне лениво 🙂

Но не все любители делать ЧПУ станки своими руками такие ленивые как я, да и финансовый подход играет свою роль. Обычно таких любителей тормозит (но не останавливает) то, что контроллер необходимо запрограммировать, а значит необходимо собрать программатор и только после этого приступать к контроллеру.

А не так давно я нашел в статью Электрическая схема для ЧПУ станка про изготовление простого контроллера на микросхемах серии 555TM7. Такой контроллер не требует прошивки и собирается за пару часов включая изготовление платы.

В статье подробно рассказано о том, как изготовить простейший контроллер для самодельного ЧПУ станка своими руками, приложена разводка печатной платы контролера в DWG формате, элементная база контроллера и бесплатная программа для управления ЧПУ станком.

Программа позволяет протестировать работоспособность контроллера ЧПУ станка, как в ручном режиме, так и автоматическом. Для последнего режима используются файлы AutoCad нарисованные с помощью линий. Полилинии, круги и дуги программой не поддерживаются.

Скачать статью по электрической схеме ЧПУ станка можно на следующих ресурсах: Depositfiles или на нашем сайте.

6. Концевой датчик или «концевик» Оси

Концевой датчик для фрезерного станка с ЧПУ

Концевой датчик, или «концевик» сообщают фрезерному станку с ЧПУ, когда он достигает предела перемещения по оси. Обычно он нужен для двух целей:

Читать еще:  КГШП (кривошипный горячештамповочный пресс): характеристики и особенности

Положение «дом»: это нулевая координата, точка отсчета «0» для текущей оси.

Лимит оси: противоположное от нулевой координаты положение инструмента на заданной оси

В большинстве станков используется один концевик на ось, и это датчик нулевого положения. Лимиты движения по осям задаются программно.

Первое, что нужно сделать, когда мы включаем станок — это отправить его в «дом» или позицию нуль. Моторы приводят в движение каретки станка по координатам до концевиков, и встает в так называемое домашнее положение.

У концевиков есть погрешность повторяемости, которая обычно определяется конструкцией датчика и используемыми компонентами. Это значит, что каждый раз отправляя станок в «дом», оси останавливаются с некоторым отклонением, предположим с погрешностью в 0.1 мм. Если нам нужно поставить станок на паузу, или вообще выключить его, а потом продолжить работу, то данная погрешность может в последствии сказаться на качестве изготавливаемого изделия.

Допустим, мы выключили станок на ночь, и включили утром, что бы продолжить работу. Отправив станок в дом, мы получили отклонение по оси 0.1 мм. Единственный возможный вариант — вручную перенастраивать станок с помощью щупа, что отнимает значительное время.

Единственный способ свести на нет большую погрешность — использовать более дорогие датчики. Наименее точными считаются механические концевики, открытые оптические — поточнее. Так же возможно использование в качестве концевика датчика Холла, который дает погрешность порядка 0.01мм.

Что ж, а на этом у нас все! Надеемся статья была Вам полезна.

Приобрести станки с ЧПУ, 3 D принтеры, расходные материалы к ним и другое оборудование, задать свой вопрос, или сделать предложение, вы можете, связавшись с нами:

После того, как собрал свой маленький станочек без существенных затрат сил, времени и средств, меня всерьез заинтересовала эта тема. Посмотрел на ютубе, если не все, то почти все ролики, связанные с любительскими станками. Особенно впечатлили фотографии изделий, которые люди делают на своих «home CNC». Посмотрел и принял решение – буду собирать свой большой станок! Вот так на волне эмоций, хорошо всё не обдумал погрузился в новый и неизведанный для себя мир CNC.

Не знал с чего начать. Первым делом заказал нормальный шаговый двигатель Vexta на 12 кг/см, между прочим с гордой надписью «made in Japan».

У одних он работал без проблем продолжительное время, у других сгорал при малейшей ошибки пользователя. Кто-то даже писал, что у него сгорел, когда тот немножко провернул вал двигателя, подключенного в это время к контроллеру. Наверное факт ненадежности китайца и сыграл в пользу выбора схемы L297+IRFZ44 активно обсуждаемой на форуме. Схема наверное и в самом деле неубиваемая т.к. полевики драйвера по амперам в несколько раз превышают то, что нужно подавать на моторы. Пусть и самому паять надо (это же только в плюс), и по стоимости деталей выходило чуть больше, чем китайский контроллер, зато надежно, что важнее.

Немного отступлю от темы. Когда всё это делалось, даже не возникло мысли, что когда-нибудь буду об этом писать. Поэтому нет фотографий процесса сборки механики и электроники, только несколько фоток, сделанных на камеру мобильника. Всё остальное щелкал специально для статьи, в уже собранном виде.

На лицевой стороне шкафа управления имеются следующие органы управления:

  • рукоятка включения и отключения вводного автоматического выключателя с максимальным и дистанционным расцепителями;
  • сигнальная лампа с линзой белого цвета, сигнализирующая о включенном состоянии вводного автоматического выключателя; переключатель для включения и отключения электронасоса охлаждения;
  • указатель нагрузки, показывающий загрузку электродвигателя главного привода.
Читать еще:  Токарно-винторезный станок 1К62. Электрическая принципиальная схема.

На каретке установлена кнопочная станция пуска и останова электродвигателя главного привода.
В рукоятке фартука встроена кнопка включения электродвигателя привода быстрых перемещений суппорта.

Разработка ЧПУ

Каждый отдельный станок имеет управляющие команды, они написаны в инструкции. Используя этот набор, необходимо закодировать весь макет под нужные имеющиеся опции. К ним могут быть отнесены следующие:

  • Запуск и отключение.
  • Выбор режущего инструмента.
  • Перемещение резца по двум и более плоскостям.
  • Определение режима и скорости резания.
  • Дополнительные механизмы, например, очистка от стружек или подача смазочной жидкости.

Введение данной программы может быть осуществлено двумя способами:

  1. На персональном компьютере с помощью специализированного программного обеспечения кодировка происходит автоматически, затем уже готовый набор команд в коде с помощью записывающего устройства переносится на оборудование.
  2. На самом станке есть стойка от пульта числового управления. Там можно ввести нужные команды.

Учтите факторы

Следует помнить о том, что чем сложнее устройство, тем больше нюансов использования. Важно учитывать:

  • Сколько одновременно может быть задействовано инструментов – количество параллельно выполняемых задач.
  • Какая рабочая мощность используется.
  • Скорость подачи. Если подобрать параметр выше рекомендуемого, это может привести к перегреву заготовки и режущей кромки, к дефектам и деформациям.

Можно ли ее собрать своими руками?

До самостоятельной сборки схемы своими руками прежде всего необходимо помнить, что предстоящая работа связана с электроэнергией, и соблюдение правил безопасности при ее производстве крайне важно!

Необходимые материалы и инструменты

Что нам понадобится:

  • сама принципиальная схема;
  • набор составляющих элементов (магнитные пускатели, концевые выключатели, трансформаторы, кнопки управления, тумблеры, реле и т. п.;
  • набор электромонтажника, в который входят необходимые элементы (пассатижи, отвертки, маркеры, изолента и т. д.);
  • кабельная продукция (кабели, монтажные провода разных сечений);
  • тестер или мультиметр электрических сигналов.

Пошаговая сборка

Сборку желательно начинать с монтажа основных составляющих, тесть сначала смонтировать кабели к электроприводам, провода к магнитным пускателям. Затем постепенно переходить к вторичным цепям управления, цепям блокировки, сигнализации, защиты.

Концы кабелей и жил проводов необходимо оконцевать и промаркировать, согласуясь с принципиальной схемой. Это крайне важно, потому что сбережет выше время и силы при пусконаладочных работах. Да и о тех, кто будет эксплуатировать станок после вас, необходимо помнить.

Подключение и проверка исправности

После монтажа нужно убедиться, что все основные работы закончены и все посторонние предметы удалены из зоны действия станка.

После подачи питания на станок можно приступить к проверке его работоспособности. Проверить, управляется ли он от рукояток и кнопок управления, действует ли торможение электродвигателя шпинделя, управляется ли продольное перемещение стола и т. д.

Возможные ошибки и способы их исправления

  • двигатель гудит при пуске, но не вращается — отсутствие напряжения в одной из фаз электросети — проверить мультиметром, где произошел обрыв (плавкие вставки, автоматический выключатель, тепловое реле, соединительный кабель);
  • при вращении электродвигатель гудит и перегревается — межвитковое замыкание, короткое замыкание между фазами — заменить электродвигатель или отремонтировать обмотку;
  • срабатывает тепловая защита — перегрузка электродвигателя — снизить нагрузку до номинальной.

Более подробные неисправности относятся к пусконаладочным работам, их множество и это материал для статьи другого профиля.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector