Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков

Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков

Если данный калькулятор был для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Благодарим за Ваш большой вклад в поддержку нашего проекта. Желаем Вам крепкого здоровья, счастья, успехов в профессиональной деятельности и дальнейшего процветания Вашего бизнеса. Огромное спасибо.

Больше интересного

Виды строительных кранов, их типы и кратко об их достоинствах.

Что же такое линолеум на сегодняшний день? Почему он до сих пор популярен и многое другое.

В этой статье мы рассмотрим виды грунтовок и узнаем для чего они нужны.

β = 1 V ( ∂ V ∂ T ) p >left(>right)_

> , К −1 (°C −1 ) — относительное изменение объёма тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T =>left(>right)_

approx >> , К −1 (°C −1 ) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z ;alpha _;alpha _> . Для изотропных тел α x = α y = α z =alpha _=alpha _> и α V = 3 α L =3alpha _> .

Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:

  • 0,53⋅10 −4 К -1 (при температуре 5—10 °C);
  • 1,50⋅10 −4 К -1 (при температуре 10—20 °C);
  • 3,02⋅10 −4 К -1 (при температуре 20—40 °C);
  • 4,58⋅10 −4 К -1 (при температуре 40—60 °C);
  • 5,87⋅10 −4 К -1 (при температуре 60—80 °C).

Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .

Для сталей [ | ]

Таблица значений коэффициента линейного расширения α, 10 −6 K −1 [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,120
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7

Работы Дальтона и Гей-Люссака

Физики продолжали бы спорить до хрипоты или забросили бы измерения, если бы не Джон Дальтон. Он и еще один физик, Гей-Люссак, в одно и то же время независимо друг от друга смогли получить одинаковые результаты измерений.

Люссак пытался найти причину такого количества разных результатов и заметил, что в некоторых приборах в момент опыта была вода. Естественно, в процессе нагревания она превращалась в пар и изменяла количество и состав исследуемых газов. Поэтому первое, что сделал ученый, – это тщательно высушил все инструменты, которые использовал для проведения эксперимента, и исключил даже минимальный процент влажности из исследуемого газа. После всех этих манипуляций первые несколько опытов оказались более достоверными.

Читать еще:  Расчет фундамента – сколько материалов нужно для основания?

Дальтон занимался этим вопросом дольше своего коллеги и опубликовал результаты еще в самом начале XIX века. Он высушивал воздух парами серной кислоты, а затем нагревал его. После серии опытов Джон пришел к выводу, что все газы и пар расширяются на коэффициент 0,376. У Люссака получилось число 0,375. Это и стало официальным результатом исследования.

Измерение

В качестве приборов для количественного измерения коэффициентов теплового расширения тел в любом фазовом состоянии применяется аппарат под названием дилатометр, который существует в большом количестве исполнений. Суть работы почти всех дилатометров в измерении малых и сверхмалых сдвигов, причиной которых служит изменение размеров тела относительно шкалы дилатометра. Исходя из этого для определения коэффициентов расширения подходят самые разнообразные методики измерения микроскопических смещений.
При этом у жидкостей и газов определяется лишь объёмное температурное расширение, понятия линейного теплового расширения для таких тел нет.
Известны дилатометры следующих типов:
— оптико-механические,
— ёмкостного типа,
— индукционного типа,
— интерференционные,
— рентгеновские,
— радиорезонансные и прочие.
Среди самых распространённых видов дилатометров находится тепловой дилатометр. Он предназначен для определения и линейного, и объемного термического расширения тела.

β = 1 V ( ∂ V ∂ T ) p >left(>right)_

> , К −1 (°C −1 ) — относительное изменение объёма тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T =>left(>right)_

approx >> , К −1 (°C −1 ) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z ;alpha _;alpha _> . Для изотропных тел α x = α y = α z =alpha _=alpha _> и α V = 3 α L =3alpha _> .

Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:

  • 0,53·10 −4 К -1 (при температуре 5—10 °C);
  • 1,50·10 −4 К -1 (при температуре 10—20 °C);
  • 3,02·10 −4 К -1 (при температуре 20—40 °C);
  • 4,58·10 −4 К -1 (при температуре 40—60 °C);
  • 5,87·10 −4 К -1 (при температуре 60—80 °C).

Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .

Для сталей

Таблица значений коэффициента линейного расширения α, 10 −6 K −1 [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,120
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7

β = 1 V ( ∂ V ∂ T ) p >left(>right)_

> , К −1 (°C −1 ) — относительное изменение объёма тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

Читать еще:  Используем глину с опилками в качестве утеплителя

α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T =>left(>right)_

approx >> , К −1 (°C −1 ) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z ;alpha _;alpha _> . Для изотропных тел α x = α y = α z =alpha _=alpha _> и α V = 3 α L =3alpha _> .

Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:

  • 0,53·10 −4 К -1 (при температуре 5—10 °C);
  • 1,50·10 −4 К -1 (при температуре 10—20 °C);
  • 3,02·10 −4 К -1 (при температуре 20—40 °C);
  • 4,58·10 −4 К -1 (при температуре 40—60 °C);
  • 5,87·10 −4 К -1 (при температуре 60—80 °C).

Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .

Для сталей

Таблица значений коэффициента линейного расширения α, 10 −6 K −1 [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,120
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7

β = 1 V ( ∂ V ∂ T ) p >left(>right)_

> , К −1 (°C −1 ) — относительное изменение объёма тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T =>left(>right)_

approx >> , К −1 (°C −1 ) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.

В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z ;alpha _;alpha _> . Для изотропных тел α x = α y = α z =alpha _=alpha _> и α V = 3 α L =3alpha _> .

Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:

  • 0,53·10 −4 К -1 (при температуре 5—10 °C);
  • 1,50·10 −4 К -1 (при температуре 10—20 °C);
  • 3,02·10 −4 К -1 (при температуре 20—40 °C);
  • 4,58·10 −4 К -1 (при температуре 40—60 °C);
  • 5,87·10 −4 К -1 (при температуре 60—80 °C).

Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .

Для сталей

Таблица значений коэффициента линейного расширения α, 10 −6 K −1 [2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,120
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7
Читать еще:  Требования к качеству бетонных поверхностей

Тепловое расширение рельса

Для прокладки железнодорожного полотна всегда привлекают инженеров-физиков, так как они могут точно вычислить, какое расстояние должно быть между стыками рельсов, чтобы при нагревании или охлаждении пути не деформировались.

Как уже было сказано выше, тепловое линейное расширение применимо для всех твердых тел. И рельс не стал исключением. Но есть одна деталь. Линейное изменение свободно происходит в том случае, если на тело не воздействует сила трения. Рельсы жестко прикреплены к шпалам и сварены с соседними рельсами, поэтому закон, который описывает изменение длинны, учитывает преодоление препятствий в виде погонных и стыковых сопротивлений.

Если рельс не может изменить свою длину, то с изменением температуры в нем нарастает тепловое напряжение, которое может как растянуть, так и сжать его. Этот феномен описывается законом Гука.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Простые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Отрицательный коэффициент теплового расширения [ править | править код ]

Некоторые материалы при повышении температуры демонстрируют не расширение, а наоборот, сжатие, т. е. имеют отрицательный коэффициент теплового расширения. Для некоторых веществ это проявляется на довольно узком температурном интервале, как, например, у воды на интервале температур 0…+3,984 °С, для других веществ и материалов, например фторид скандия(III), вольфрамат циркония (ZrW2O8) [3] , некоторых углепластиков интервал весьма широк. Подобное поведение демонстрирует также обычная резина. При сверхнизких температурах аналогичным образом ведут себя кварц, кремний и ряд других материалов. Также существуют инварные сплавы (ферро-никелевые), имеющие в некотором диапазоне температур коэффициент теплового расширения, близкий к нулю.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector