Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способ защиты — плазменно-порошковая наплавка

Наплавка

Технологии наплавки — оборудование, расходные материалы, применение

Технологический процесс нанесения покрытий при расплавлении как присадочного материала (прутков, проволок, трубок, стержней, лент, порошков), так и поверхностного слоя наплавляемой металлической поверхности. В зависимости от вида источника нагрева наплавка может производиться при помощи теплоты газового пламени (газопламенная), электрической дуги (электродуговая в среде защитного газа, под флюсом и др.), расплавленного шлака (электрошлаковая), концентрированных источников энергии — сжатой дуги (плазменная), лазерного луча (лазерная) и др. методами.

Преимущества плазменной наплавки

Популярность методики наплавления защитных покрытий плазмотроном объясняется рядом положительных свойств:

  • метод применим для многих материалов, включая тугоплавкие;
  • геометрические параметры и форма детали значения не имеют, результативность обработки стандартная;
  • можно наносить наплавку в несколько слоев, до 6,5 мм толщиной с припуском от 400 до 900 микрон;
  • при небольшой глубине расплавления (от 300 микрон до 2,5 мм) формируется незначительная зона термического влияния, риск образования внутренних дефектов минимальный;
  • за счет большой скорости разогрева обрабатываемый металл не успевает прогреться на большую глубину, структурная зернистость не изменяется, удается избежать коробления, деформации деталей;
  • защитные покрытия можно наносить на тонкие поверхности, минимальная толщина плазменного напыления не более 200 микрон;
  • плазменная обработка эффективнее электродуговой наплавки в разы;
  • поток плазмы регулируется с большой точностью.

Метод применяется в промышленности и ремонтных мастерских, можно подобрать необходимое оборудование.

Подготовка к работе

Прежде чем приступить к наплавке, нужно настроить оборудование. В соответствии со справочными данными, необходимо подобрать и установить правильный угол наклона сопла горелки к поверхности изделия, выверить расстояние от торца горелки до детали (оно должно составлять от 5 до 8 миллиметров) и вставить проволоку (если осуществляется наплавка проволочного материала).

Если наплавка будет осуществляться путем колебаний сопла в поперечных направлениях, то необходимо выставить головку таким образом, чтобы сварной шов находился ровно посередине между крайними точками амплитуд колебания головки. Также необходимо отрегулировать механизм, который задает частоту и величину колебательных движений головки.

Плазменно-порошковая наплавка

Этот способ создания слоя для защиты поверхности изделия представляет собой особый вид механизированного процесса. В качестве теплового источника выбрана плазма, обозначенная высокотемпературной сварочной дугой.

Материалом для присадки служат гранулированные смеси порошков из металлов с высокой степенью износостойкости. Их транспортировку внутрь плазмотрона осуществляют при помощи газа, подаваемого через специальный питатель.

Плазменная наплавка характеризуется:

  • малой глубиной проплавления металла основы (не более 5%);
  • обеспечением прецизионной точности качественного наплава;
  • минимальной потерей материала присадки;
  • контроль над дугой плазмы при гарантии чистоты наплава;
  • возможностью наплавления различных видов сплавов.

Минимальное проплавление основы при высокой производительности процесса гарантирует широкий диапазон выбора значений тепловой мощности совместно с подачей присадки. Благодаря такой возможности удается получить наплавленные слои заданной твердости с определенным химическим составом.

Читать еще:  Виды сварных труб, способы производства, преимущества материала

Высота наплава однородной структуры над поверхностью плавления может достигать 0,5 мм. Эта особенность предоставляет возможность выполнить однослойную наплавку там, где требуется несколько слоев, что сокращает расходы на присадочный материал и время обработки.

Преимущества плазменной наплавки

Популярность методики наплавления защитных покрытий плазмотроном объясняется рядом положительных свойств:

  • метод применим для многих материалов, включая тугоплавкие;
  • геометрические параметры и форма детали значения не имеют, результативность обработки стандартная;
  • можно наносить наплавку в несколько слоев, до 6,5 мм толщиной с припуском от 400 до 900 микрон;
  • при небольшой глубине расплавления (от 300 микрон до 2,5 мм) формируется незначительная зона термического влияния, риск образования внутренних дефектов минимальный;
  • за счет большой скорости разогрева обрабатываемый металл не успевает прогреться на большую глубину, структурная зернистость не изменяется, удается избежать коробления, деформации деталей;
  • защитные покрытия можно наносить на тонкие поверхности, минимальная толщина плазменного напыления не более 200 микрон;
  • плазменная обработка эффективнее электродуговой наплавки в разы;
  • поток плазмы регулируется с большой точностью.

3 Комбинированный плазмотрон для наплавки

Плазменно-порошковая наплавка на большинстве современных предприятий осуществляется именно в комбинированных агрегатах. В них металлический присадочный порошок расплавляется между соплом горелки и электродом из вольфрама. А в то время, когда дуга горит между деталью и электродом, начинается нагрев поверхности наплавляемого изделия. За счет этого происходит качественное и быстрое сплавление основного и присадочного металла.

Комбинированный плазмотрон обеспечивает малое содержание в составе наплавленного основного материала, а также наименьшую глубину его проплавления. Именно данные факты и признаются главным технологическим достоинством наплавки при помощи плазменной струи.

От вредного влияния окружающего воздуха наплавляемая поверхность предохраняется инертным газом. Он поступает в сопло (наружное) установки и надежно защищает дугу, окружая ее. Транспортирующим газом с инертными характеристиками осуществляется и подача порошковой смеси для присадки. Она поступает из специального питателя.

В целом стандартный плазмотрон комбинированного типа действия, в котором производится напыление и наплавка металла, состоит из следующих частей:

  • два источника питания (один питает «косвенную» дугу, другой – «прямую»);
  • питатель для смеси;
  • сопротивления (балластные);
  • отверстие, куда подается газ;
  • сопло;
  • осциллятор;
  • корпус горелки;
  • труба для подачи несущего порошковую композицию газа.

  • 1 Технология
  • 2 Применение
  • 3 Литература
  • 4 См. также

Плазмой называется высокотемпературный сильно ионизированный газ, состоящий из молекул, атомов, ионов, электронов, световых квантов и др. При дуговой ионизации газ пропускают через канал и создают дуговой разряд, тепловое влияние которого ионизирует газ, а электрическое поле создаёт направленную плазменную струю. Газ может ионизироваться также под действием электрического поля высокой частоты. Газ подаётся при давлении в 2 …3 атмосферы, возбуждается электрическая дуга силой 400 … 500 А и напряжением 120 … 160 В Ионизированный газ достигает температуры 10 … 18 тыс. С, а скорость потока — до 15000 м/сек. Плазменная струя образуется в специальных горелках — плазмотронах. Катодом является неплавящий вольфрамовый электрод.

Читать еще:  Сварочный аппарат Ресанта САИ-190 инструкции

В зависимости от компоновки различают:

  1. Открытую плазменную струю (анодом является деталь или пруток). В этом случае происходит повышенный нагрев детали. Используется эта схема для резки металла и для нанесения покрытий.
  2. Закрытую плазменную струю (анодом является сопло или канал горелки). Хотя температура сжатой дуги на 20 …30% в этом случае выше, но интенсивность потока ниже, т. к. увеличивается теплоотдача в окружающую среду. Схема используется для закалки, металлизации и напыления порошков.
  3. Комбинированная схема (анод подключается к детали и к соплу горелки). В этом случае горят две дуги. Схема используется при наплавке порошком.

Плазменную наплавку металла можно реализовать двумя способами:

  1. Струя газа захватывает и подаёт порошок на поверхность детали;
  2. В плазменную струю вводится присадочный материал в виде проволоки, прутка, ленты.

В качестве плазмообразующих газов можно использовать аргон, гелий, азот, кислород, пар, водород и воздух. Наилучшие результаты наплавки получаются с аргоном и гелием.

Достоинствами плазменной наплавки являются:

  1. Высокая концентрация тепловой мощности и минимальная ширина зоны термического влияния.
  2. Возможность получения толщины наплавляемого слоя от 0,1 мм до нескольких миллиметров.
  3. Возможность наплавления различных износостойких материалов (медь, латунь, пластмасса) на стальную деталь.
  4. Возможность выполнения плазменной закалки поверхности детали.
  5. Относительно высокий КПД дуги (0.2 …0.45).
  6. Малое (по сравнению с другими видами наплавки) перемешивание наплавляемого материала с основой, что позволяет достичь необходимых характеристик покрытий.

Поверхность детали необходимо готовить к наплавке более тщательно, чем при обычной электродуговой или газовой сварке, т. к. посторонние включения уменьшают прочность наплавленного слоя. Для этого производится механическая обработка поверхности (проточка, шлифование, пескоструйная обработка..), иногда обезжиривание. Мощность электрической дуги подбирают такой, чтобы сильно не нагревалась деталь, и чтобы основной металл был на грани расплавления.

Рис. 1. Структуры наплавленного слоя выполненного плазменной наплавкой (S — стальная основа, A — WC/Co, B — WC/W2C)
а) — 50 кратное увеличение; б) — 160 кратное увеличение.

На рис.1 представлены структуры наплавленного слоя выполненного плазменной наплавкой.

Оптимальный выбор технологических режимов процесса плазменной наплавки обеспечивает минимальное перемешивание наплавляемого материала с основным металлом, практически, с нулевой глубиной проплавления (что позволяет при однослойной наплавке обеспечить заданный состав даже тонкого слоя покрытия), а также минимальную окисляемость наплавляемого материала за счёт специальной инертной или восстановительной защитной среды.

Читать еще:  Виды неплавящихся электродов для сварки в среде аргона

Плазменная порошковая наплавка обеспечивает высокую работоспособность деталей за счет отличного качества наплавленного металла, его однородности, а также благоприятной структуры, определяемой специфическими условиями кристаллизации металла сварочной ванны.

Производительность плазменной наплавки с вдуванием порошкообразного материала в столб дуги транспортирующим газом можно повышать либо за счет увеличения тепловой мощности дуги, либо за счет более эффективного нагрева порошка в дуге. Особенности процессов плавления присадочного и основного металлов при плазменной наплавке обусловлены возможностью регулировать в широком диапазоне соотношение между тепловой мощностью дуги, количеством и температурой подаваемого в сварочную ванну присадочного порошка. Изменяя это соотношение, можно обеспечить минимальное проплавление основного металла.

Эффективность метода зависит от выбранного источника питания, материала покрытия, режимов наплавки и используемого манипулятора. Наиболее эффективным является метод автоматической плазменной наплавки. В качестве материала выбирается композиция из смеси карбидов и связующей матрицы. Режимы наплавки подбираются таким образом, чтобы частицы карбидов не расплавлялись, тем самым, обеспечивая наплавленному слою необходимую стойкость к ударным нагрузкам и изнашиванию. Связующий материал выбирается таким образом, чтобы препятствовать вязкому разрушению. Обычно это — сплавы на основе Ni, Co, Fe.

Твердосплавное покрытие обычно состоит из одного или нескольких карбидов, которые связываются со стальной основой посредством металлического сплава (связующим сплавом). В то время как карбидная фаза дает твердость и износостойкость, матричный материал выступает в качестве связки карбидов и стальной подложки.

Под карбидной фазой чаще всего подразумевают смесь трех типов карбидов WC, WC/W2C, WC/Co.

Вольфрам образует два карбида:

  • карбид вольфрама WC
  • карбид дивольфрама W2C

Макрокристаллический карбид вольфрама WC имеет форму монокристаллов. Макрокристаллический карбид придает покрытию жесткость и устойчивость. Существуют различные смеси этих двух форм. Чаще всех выбирается в качестве наполнителя карбидной фазы эвтектический состав WC/ W2C.

Карбид вольфрама на органической связке с кобальтом, иногда называют .

В некоторых случаях вместо карбида вольфрама выбирают в качестве составляющей карбидной фазы карбид ванадия или титана. Связка чаще всего состоит из матричного сплава на основе кобальта, никеля, железа и неметаллических компонентов: карбидов и боридов.

Плазменная наплавка успешно применяется для упрочнения шарошечных долот.

В процессе бурения зубья долот взаимодействуя с твердой породой под колоссальным давлением обламываются, стираются или выпадают из основы долота. Выход из действия одного из зубьев приводит к последующей поломки остальных, и соответственно непригодности долот для дальнейших работ.

Еще одно наиболее уязвимое место на буровом долото является края корпуса. В одношарошечном долото истирание металла приводит к выпадению зубьев и описанной выше поломке оборудования.

Сложность наплавки бурового долото заключается в необходимости применения специфических манипуляторов из-за сложной геометрии оборудования и разработки технологии процесса.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×