Palitra21.ru

Домашний уют — журнал
41 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы полевого транзистора для чайников

Принцип работы полевого транзистора для чайников

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Классификация полевых транзисторов

Лекция 12. Полевые транзисторы. Классификация, принцип действия, основные параметры, схемы включения и режимы работы

Полевым транзистором называется полупроводниковый прибор, ток в котором создаётся основными носителями зарядов (только электронами или только дырками). Заряды перемещаются в области, которая называется канал. Электрод, через который ток втекает в транзистор, называется исток (И). Прошедшие через канал заряды выходят из него через электрод, который называется сток (С). Движением зарядов управляет электрод, который называется затвор (З).

Классификация. В зависимости от типа проводимости канала различают полевые транзисторы с каналом типа p и типа n, а в зависимости от способа выполнения затвора – с управляющим p-n переходом и с изолированным затвором. Условное графическое обозначение полевых транзисторов представлено на рис. 12.1. Стрелка показывает направление от слоя p к слою n.

Тип затвораКанал n-типаКанал p-типа
С управляющим p-n переходом
С изолированным затвором и встроенным каналом
С изолированным затвором и индуцированным каналом

Рис. 12.1. Условное графическое обозначение полевых транзисторов

В 1926 году был открыт полевой эффект и указан его недостаток — поверхностные волны в металле не позволяли проникать полю затвора в канал. Однако в 1952 году Уильям Шокли исследовал влияние управляющего p-n перехода на ток в канале, а в 1959 году Джон Аталла и Дэвон Канг из Bell Labs изготовили полевой транзистор с изолированным затвором по технологии МОП металлический (Al) затвор, изолятор оксид кремния (SiO2) и канал-полупроводник (Si).

Система обозначений транзисторов была рассмотрена в лекции 6, и для полевых транзисторов, как и для биполярных, установлена отраслевым стандартом ОСТ 11336.919 – 81 и его последующими редакциями.

12.2. Устройство и принцип действия полевых транзисторов с управляющим p-n переходом

Рассмотрим физические процессы, происходящие в полевом транзисторе с управляющим p-n переходом и каналом n-типа, схематичное изображение которого представлено на рис. 12.2.

Рис. 12.2. Полевой транзистор с управляющим p-n переходом и каналом n-типа

Такая конструкция, в которой электроды расположены в одной плоскости, называется планарной. В исходном полупроводниковом материале методом диффузии создаётся легированная область n – канал. Затем на поверхности образуют сток, исток и затвор таким образом, что канал получается под затвором. Нижняя область исходного полупроводника – подложка – обычно соединяется с затвором. Исток подключают к общей точке источников питания, и напряжения на стоке и затворе измеряют относительно истока.

Изменение проводимости канала осуществляется изменением напряжения, прикладываемого к p-n переходам затвора и подложки. На рис. 12.3. представлены графики статических характеристик. Поскольку ток затвора не зависит от напряжения UЗИ, входная характеристика отсутствует. Вместо неё применяется сток — затворная характеристика передачи . Выходная характеристика – это зависимость тока стока от напряжения на стоке при фиксированном напряжении на затворе .

Рис. 12.3. Статические характеристики полевого транзистора с управляющим p-n переходом

При UЗИ = 0 толщина p-n – переходов затвора и подложки минимальна, канал «широкий» и проводимость его наибольшая. Под действием напряжения UСИ по каналу будет проходить ток, создаваемый основными носителями зарядов – электронами. На участке напряжений от 0 до UСИ.НАС ток будет нарастать и достигнет величины IС.нач – начального тока стока. Дальнейшее увеличение напряжения на стоке повышает напряжённость поля в запорном слое p-n переходов затвора и подложки, но не увеличивает ток стока. Когда напряжение на стоке достигнет UСИ.макс, может наступить электрический пробой по цепи сток – затвор, что показывает вертикальная линия роста тока на выходной характеристике.

Если отрицательное напряжение на затворе увеличивать, то, в соответствии с эффектом Эрли, толщина p-n – переходов затвора и подложки начнёт увеличиваться за счёт канала, сечение канала будет уменьшаться. Ток стока будет ограничен на меньшем уровне. Если и дальше увеличивать отрицательное напряжение на затворе, то, при некоторой его величине, называемой напряжением отсечки UЗИотс, p-n переходы затвора и подложки сомкнутся и перекроют канал. Движение электронов в канале прекратится, ток стока будет равен нулю, и не будет зависеть от напряжения на стоке.

Следовательно, полевой транзистор с управляющим p-n–переходом до напряжения на стоке UСИ.НАС работает как регулируемое сопротивление, а на горизонтальных участках выходных характеристик может использоваться для усиления сигналов в режиме нагрузки.

Отличие полевых транзисторов с изолированным затвором состоит в том, что у них между металлическим затвором и полупроводником-каналом находится слой диэлектрика, в качестве которого используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния методом высокотемпературного окисления. Существуют два типа полевых транзисторов с изолированным затвором: с индуцированным каналом и с встроенным каналом.

Рассмотрим принцип действия полевого транзистора с индуцированным каналом n-типа, упрощённая конструкция которого представлена на рис. 12.4.

Основой транзистора является подложка – пластина Si с проводимостью р типа и с высоким удельным сопротивлением. На поверхности подложки методом диффузии создаются две сильно легированные области с проводимостью n типа, не соединённые между собой. К ним подключают металлические контакты, которые будут выводами стока и истока. Поверхность пластины покрывают слоем SiO2, на который между стоком и истоком наносят слой металла – затвор. Подложку обычно электрически соединяют с истоком.

При UЗИ = 0, даже если между стоком и истоком приложено напряжение, транзистор закрыт, и в цепи стока протекает малый обратный ток p-n перехода между стоком и подложкой (рис. 12.4, а).

а)б)

Рис. 12.4. Конструкция и принцип действия полевого транзистора с индуцированным каналом:

а – при UЗИ = 0; б – при UЗИ > порогового значения

При подаче на затвор положительного относительно истока напряжения электрическое поле затвора через диэлектрик проникает на некоторую глубину в приконтактный слой полупроводника, выталкивая из него вглубь полупроводника основные носители зарядов (дырки) и притягивая электроны. При малых напряжениях UЗИ под затвором возникает обеднённый основными носителями зарядов слой и область объёмного заряда, состоящего из ионизированных атомов примеси.

При дальнейшем увеличении положительного напряжения на затворе в поверхностном слое полупроводника происходит инверсия электропроводности (рис. 12.4, б). Образуется тонкий инверсный слой – канал – соединяющий сток с истоком. Напряжение на затворе, при котором образуется канал, называется пороговым напряжением.

Изменение напряжения на затворе вызывает изменение толщины и электропроводности канала, а, следовательно, и ток стока.

На рис. 12.5 представлены графики статических характеристик полевого транзистора с индуцированным каналом n-типа.

Рис. 12.5. Графики статических характеристик полевого транзистора с индуцированным каналом n-типа

Режим работы полевого транзистора, при котором канал обогащается носителями зарядов при увеличении напряжения на затворе, называется режимом обогащения.

Отсутствие тока стока при нулевом напряжении на затворе, а также одинаковая полярность напряжений UЗИ и UСИ у транзисторов с индуцированным каналом позволяет использовать их в экономичных цифровых микросхемах.

Рассмотрим теперь принцип действия полевого транзистора с встроенным каналом n-типа, упрощённая конструкция которого аналогична конструкции, представленной на рис. 12.4, б.

На стадии изготовления такого транзистора между областями стока и истока методом диффузии создаётся тонкий слаболегированный слой – канал – с таким же типом проводимости, как у стока и истока.

При UЗИ = 0, когда между стоком и истоком приложено напряжение, транзистор открыт, и в цепи стока протекает ток. Отрицательное напряжение, приложенное к затвору относительно истока, будет выталкивать электроны из канала и втягивать в канал дырки из подложки. Канал обедняется основными носителями зарядов, его толщина и электропроводность уменьшаются. При некотором отрицательном напряжении на затворе, называемом напряжением отсечки, канал закрывается, ток стока становится равным нулю.

Увеличение положительного напряжения на затворе вызывает приток электронов из подложки в канал. Канал обогащается носителями, ток стока возрастает.

Таким образом, транзистор с встроенным каналом может работать как в режиме обеднения, так и в режиме обогащения.

На рис. 12.6 представлены графики статических характеристик полевого транзистора с встроенным каналом n-типа.

Рис. 12.6. Графики статических характеристик полевого транзистора с встроенным каналом n-типа

MOSFET транзисторы

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов — IRFZ44N.

Читать еще:  Какие бывают щетки для электродвигателей и как они маркируются

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом ( +) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Полевым транзистором (ПТ) называется полупроводниковый радиокомпонент, используемый для усиления электрического сигнала. В цифровых устройствах схемы на основе ПТ исполняют функции ключей, управляющих переключениями логических элементов. В последнем случае использование полевых транзисторов оказывается крайне выгодным с точки зрения миниатюризации аппаратуры. Это обусловлено тем, что для цепей управления этими радиокомпонентами требуются небольшие мощности, вследствие чего на одном кристалле полупроводниковой микросхемы можно размещать десятки тысяч транзисторов.

Полупроводниковым сырьём для изготовления полевых транзисторов являются следующие материалы:

  1. карбид кремния;
  2. арсенид галлия;
  3. нитрид галлия;
  4. фосфид индия.

Устройство и принцип работы полевого транзистора.

ПТ состоит из трёх элементов – истока, стока и затвора. Функции первых двух очевидны и состоят соответственно в генерировании и приёме носителей электрического заряда, то есть электронов или дырок. Предназначение затвора заключается в управлении током, протекающим через полевой транзистор. Таким образом, мы получаем классический триод с катодом, анодом и управляющим электродом.

В момент подачи напряжения на затвор возникает электрическое поле, изменяющее ширину p-n-переходов и влияющее на величину тока, который протекает от истока к стоку. При отсутствии управляющего напряжения ничто не препятствует потоку носителей заряда. С повышением управляющего напряжения канал, по которому движутся электроны или дырки, сужается, а при достижении некоего предельного значения закрывается вовсе, и ПТ входит в так называемый режим отсечки. Как раз это свойство полевых транзисторов и позволяет использовать их в качестве ключей.

Усилительные свойства радиокомпонента обусловлены тем, что мощный электрический ток, протекающий от истока к стоку, повторяет динамику напряжения, прикладываемого к затвору. Другими словами, с выхода усилителя снимается такой же по форме сигнал, что и на управляющем электроде, только гораздо более мощный.

Распространённые типы полевых транзисторов.

В настоящее время в радиоаппаратуре применяются ПТ двух основных типов – с управляющим p-n-переходом и с изолированным затвором. Опишем подробнее каждую модификацию.

1. Управляющий p-n-переход.

Эти полевые транзисторы представляют собой удлинённый полупроводниковый кристалл, противоположные концы которого с металлическими выводами играют роль стока и истока. Функцию затвора исполняет небольшая область с обратной проводимостью, внедрённая в центральную часть кристалла. Так же, как сток и исток, затвор комплектуется металлическим выводом.

Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок (в зависимости от типа проводимости основного кристалла).

2. Изолированный затвор.

Конструкция этих полевых транзисторов отличается от описанных выше ПТ с управляющим p-n-переходом. Здесь полупроводниковый кристалл играет роль подложки, в которую на некотором удалении друг от друга внедрены две области с обратной проводимостью. Это исток и сток соответственно. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.

Из-за того, что в конструкции этих полевых транзисторов используются три типа материалов – металл, диэлектрик и полупроводник, – данные радиокомпоненты часто именуют МДП-транзисторами. В элементах, которые формируются в кремниевых микросхемах планарно-эпитаксиальными методами, в качестве диэлектрического слоя используется оксид кремния, в связи с чем буква «Д» в аббревиатуре заменяется на «О», и такие компоненты получают название МОП-транзисторов.

Существует два вида этих полевых транзисторов – с индуцированным и встроенным каналом. В первых физический канал отсутствует и возникает только в результате воздействия электрического поля от затвора на подложку. Во вторых канал между истоком и стоком физически внедрён в подложку, и напряжение на затворе требуется не для формирования канала, а лишь для управления его характеристиками.

Схемотехническое преимущество ПТ с изолированным затвором перед транзисторами с управляющим p-n-переходом заключается в более высоком входном сопротивлении. Это расширяет возможности применения данных элементов. К примеру, они используются в высокоточных устройствах и прочей аппаратуре, критичной к электрическим режимам.

В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям. Это вынуждает соблюдать особые меры предосторожности при работе с этими радиодеталями. В частности, в процессе пайки необходимо использовать паяльную станцию с заземлением, а, кроме того, заземляться должен и человек, выполняющий пайку. Даже маломощное статическое электричество способно повредить полевой транзистор.

Читать еще:  Как подключить двигатель от стиральной машины Indesit?

Схемы включения полевых транзисторов.

В зависимости от того, каким образом ПТ включается в усилительный каскад, существует три схемы – с общим истоком, с общим стоком и с общим затвором. Способы различаются тем, на какие электроды подаются питающие напряжения, и к каким цепям присоединяются источник сигнала и нагрузка.

Схема с общим истоком используется чаще всего, так как именно в этом случае достигается максимальное усиление входного сигнала. Способ включения ПТ с общим стоком используется, главным образом, в устройствах согласования, поскольку усиление здесь небольшое, но входной и выходной сигналы совпадают по фазе. И, наконец, схема с общим затвором находит применение, в основном, в высокочастотных усилителях. Полоса пропускания при таком включении полевого транзистора гораздо шире, чем при других схемах.

5. Полевые транзисторы

5.1. Общие сведения о полевых транзисторах

Полевым транзистором именуют такой компонент, через который под влиянием продольного электрического поля протекает ток, обусловленный движением носителей заряда сугубо одного типа. Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа проводимости, такие компоненты ещё называют униполярными.

Затвором называют вывод полевого транзистора, к которому подводят напряжение от устройства управления. Следует подчеркнуть, что управление полевыми транзисторами осуществляют напряжением, а биполярными транзисторами – током. Истоком именуют вывод, который обычно служит источником поступления в транзистор носителей заряда от устройства электропитания. Стоком называют вывод компонента, через который носители заряда покидают транзистор. Перемещение основных носителей заряда от истока к стоку происходит по области, которая носит название канала полевого транзистора. Каналы у полевых транзисторов могут быть как электронного, так и дырочного типов проводимостей. Носителями заряда в полевых транзисторах n-типа выступают электроны, а в приборах p-типа – дырки. Полевые транзисторы классифицируют на приборы с управляющим переходом и с изолированным затвором, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и другое. Входное сопротивление транзистора – это отношение приращения напряжения затвор-исток и приращению тока затвора. Внутреннее сопротивление транзистора – это отношение приращения напряжения сток-исток к приращению тока стока при заданном напряжении затвор-исток. Крутизна стокозатворной характеристики – это отношение приращения тока стока к приращению напряжения затвор-исток при фиксированном напряжении сток-исток.

5.2. Полевые транзисторы с управляющим переходом

5.2.1. Конструкция полевых транзисторов с управляющим переходом

Первый полевой транзистор с управляющим переходом теоретически были рассчитан Уильямом Шокли в 1952 году. Одна из разновидностей таких транзисторов – унитрон – представляет собой полупроводниковую пластину дырочного или электронного типов проводимостей. На её торцы наносят токопроводящие плёнки, к которым подключают выводы стока и истока, а широкие грани легируют для получения противоположного типа проводимости относительно проводимости пластины и подсоединяют к этим граням вывод затвора. Другая разновидность полевых транзисторов с управляющим переходом – текнетрон – может быть образован, например, стержнем из германия, к торцам которого подсоединяют выводы истока и стока, а вокруг стержня внесением индия выполняют кольцеобразный затвор.

Упрощённая конструкция полевого транзистора с управляющим переходом и каналом p-типа проводимости изображена на рис. 5.1.

Из рисунка видно, что канал возникает между двумя p-n переходами. Конструкция компонентов с каналом n-типа не имеет отличий от конструкции полевых транзисторов с каналом p-типа, что видно на рис. 5.2.

Но в полевых транзисторах с каналом n-типа полупроводник, в котором возникает канал, обладает электронным типом проводимости, а области затвора имеют дырочную проводимость. Полевые транзисторы с каналом n-типа могут обладать лучшими частотными и температурными свойствами и образовывать шумы меньшей амплитуды, чем приборы с каналом p-типа.

5.2.2. Принцип действия полевых транзисторов с управляющим переходом

Принцип действия полевых транзисторов с управляющим переходом заключён в изменении площади сечения канала под воздействием поля, возникающего при подаче напряжения между затвором и истоком. Упрощённая структура полевого транзистора с управляющим переходом и каналом p-типа приведена на рис. 5.3.

Пока между затвором и истоком не подано напряжение управления, под воздействием внутреннего поля электронно-дырочных переходов они заперты, сечение канала наиболее велико, его сопротивление низко, и ток стока транзистора максимален. Напряжение затвор-исток, при котором ток стока наиболее велик, называют напряжением насыщения.

Если между затвором и истоком приложить небольшое напряжение, ещё немного закрывающее p-n переходы, то зоны, к которым подсоединён затвор, будут обеднены носителями заряда, размеры этих зон объёмного заряда возрастут, частично перекрывая сечение канала, сопротивление канала возрастёт, и сила тока стока станет меньше. Обеднённые носителями заряда области почти не проводит электрический ток, причём эти области неравномерны по длине пластины полупроводника. Так, у торца пластинки, к которому подключен вывод стока, обеднённые носителями заряда области будут наиболее существенно перекрывать канал, а у противоположного торца, к которому подсоединён вывод истока, снижение площади сечения канала будет наименьшим.

Если приложить ещё большее напряжение между затвором и истоком, то области, обеднённые носителями заряда, станут столь велики, что сечение канала может быть ими полностью перекрыто. При этом сопротивление канала будет наибольшим, а ток стока будет практически отсутствовать. Напряжение затвор-исток, соответствующее такому случаю, именуют напряжением отсечки.

К важнейшим характеристикам полевых транзисторов относят стокозатворную характеристику и семейство стоковых характеристик. Стокозатворная характеристика отражает зависимость силы тока стока от приложенного к выводам затвор-исток напряжения при фиксированном напряжении сток-исток. Это показано на рис. 5.4 для полевых транзисторов с управляющим переходом и каналами p-типа и n-типа проводимостей.

Семейство стоковых характеристик представляет зависимости токов стока от напряжений сток-исток при фиксированных стабильных напряжениях затвор-исток, что изображено на рис. 5.5.

По достижении определённого значительного напряжения сток-исток развивается лавинный пробой области между затвором и стоком. При этом идёт резкое увеличение тока стока, что можно видеть на стоковой характеристике.

Функционирование полевых транзисторов с управляющим переходом возможно сугубо путём обеднения канала носителями заряда. В связи с тем, что напряжение сигнала прикладывают к закрытому переходу, входное сопротивление каскада велико и для рассмотренных выше приборов может достигать 10 9 Ом.

5.3. Полевые транзисторы с изолированным затвором

Полевой транзистор с изолированным затвором потому носит такое название, что его затвор, выполненный из тонкого металлического покрытия, нанесён на диэлектрический слой, который отделяет затвор от канала. По этой причине полевые транзисторы с изолированным затвором имеют аббревиатуру МДП (металл – диэлектрик – полупроводник). Слой диэлектрика часто образуют двуокисью кремния. Такие полевые транзисторы носят аббревиатуру МОП (металл – оксид – полупроводник). Полевые транзисторы с изолированным затвором имеют большее входное сопротивление, достигающее 10 15 Ом, чем полевые транзисторы с управляющим переходом.

5.3.1. Полевые транзисторы со встроенным каналом

Структура полевого транзистора со встроенным каналом n-типа проводимости дана на рис. 5.6.

Приложим от источника питания постоянное напряжение между выводами сток-исток. Пока напряжение затвор-исток отсутствует, канал обладает некоторым сопротивлением, по нему двигаются основные носители заряда, а, следовательно, протекает некоторый ток стока транзистора. Если к выводам затвор-исток транзистора с каналом n-типа подключить источник питания так, чтобы на затвор было подано напряжение положительной полярности, то неосновные носители заряда, присутствующие в подложке, будут втянуты электрическим полем в канал. Концентрация носителей заряда в канале возрастёт, его сопротивление станет меньше, а, значит, ток стока станет больше. Если подключить источник питания обратной полярностью так, чтобы на затвор было подано отрицательное напряжение относительно истока, то электроны, присутствующие в канале, под действием поля будут вытеснены в подложку. При этом концентрация носителей заряда в канале станет ниже, сопротивление канала возрастет, и ток стока станет меньше. Если запирающее напряжение затвор-исток будет столь велико, что практически все носители заряда будут оттеснены в подложку, то ток стока станет почти отсутствовать. Стокозатворные характеристики полевых транзисторов со встроенным каналом n-типа и p-типа проводимостей приведены на рис. 5.7.

Заключим, что полевые транзисторы со встроенным каналом функционируют как в режиме обеднения, так и в режиме обогащения канала.

5.3.2. Полевые транзисторы с индуцированным каналом

Структура полевого транзистора n-типа проводимости с индуцированным каналом представлена на рис. 5.8.

Когда напряжение затвор-исток полевого транзистора, изображённого на рисунке, отсутствует, либо к затвору приложено напряжение отрицательной полярности, канал не возникает и ток стока транзистора не течёт. Когда на затор транзистора подано напряжение положительной полярности относительно истока, возникнет электрическое поле, втягивающее в область под затвором электроны, которые находились в подложке на правах неосновных носителей заряда. А дырки из канала полем будут оттеснены в подложку, обладающую p-типом проводимости. Концентрация электронов в локальном участке полупроводника под затвором между стоком и истоком возрастает относительно концентрации дырок, то есть имеет место смена типа проводимости и возникает, или как говорят, индуцируется, канал. В результате происходит движение носителей заряда по каналу, и течёт ток стока. Стокозатворные характеристики полевых транзисторов с индуцированным каналом p-типа и n-типа проводимостей даны на рис. 5.9.

Сделаем вывод, что полевые транзисторы с индуцированным каналом функционируют сугубо в режиме обогащения канала носителями заряда.

Читать еще:  Как вырезать круглое отверстие в металле: инструкция

5.4. Режимы работы полевых транзисторов

5.4.1. Динамический режим работы транзистора

Динамическим режимом работы называют такой режим, в котором к транзистору, который усиливает входной сигнал, подключена нагрузка. Такой нагрузкой может служить резистор Rс, подсоединённый последовательно со стоком полевого транзистора, включённого по схеме с общим истоком, что показано на рис. 5.10.

Постоянное напряжение питания каскада Uп составляет сумму падений напряжений на выводах сток-исток транзистора и на резисторе Rс, то есть Uп = URс + Uси.р. В тоже время, согласно закону Ома, падение напряжения на нагрузочном резисторе Rс равно произведению протекающего по нему тока Iс.р на его сопротивление: URс = Iс.р • Rс. Согласно сказанному, напряжение питания каскада составляет: Uп = Uси.р + Iс.р • Rс. Последнее выражение можно переписать относительно напряжения сток-исток транзистора, и в этом случае получим линейную формулу для выходной цепи Uси.р = Uп – Iс.р • Rс, которую именуют уравнением динамического режима.

На выходных статических характеристиках транзистора для получения представления о режимах работы каскада строят динамическую характеристику, имеющую форму линии. Рассмотрим рисунок 5.11, на котором изображена такая динамическая характеристика усилительного каскада.

Чтобы провести эту линию, которую ещё называют нагрузочной прямой, необходимо знать две координаты точек, соответствующих напряжению питания каскада и току стока в режиме насыщения. Эта нагрузочная прямая пересекает семейство выходных статических характеристик, а точка пересечения, которую называют рабочей, соответствует определённому напряжению затвор-исток. Зная положение рабочей точки, можно вычислить некоторые ранее не известные токи и напряжения в конкретном устройстве.

5.4.2. Ключевой режим работы транзистора

Ключевым называют такой режим работы транзистора, при котором он может быть либо полностью открыт, либо полностью закрыт, а промежуточное состояние, при котором компонент частично открыт, в идеале отсутствует. Мощность, которая выделяется в транзисторе, в статическом режиме равна произведению тока, протекающего через выводы сток-исток, и напряжения, приложенного между этими выводами.

В идеальном случае, когда транзистор открыт, т.е. в режиме насыщения, его сопротивление межу выводами сток-исток стремится к нулю. Мощность потерь в открытом состоянии представляет произведение равного нулю напряжения на определённую величину тока. Таким образом, рассеиваемая мощность равна нулю.

В идеале, когда транзистор закрыт, т.е. в режиме отсечки, его сопротивление между выводами сток-исток стремится к бесконечности. Мощность потерь в закрытом состоянии есть произведение определённой величины напряжения на равное нулю значение тока. Следовательно, мощность потерь равна нулю.

Выходит, что в ключевом режиме, в идеальном случае, мощность потерь транзистора равна нулю. На практике, естественно, когда транзистор открыт, присутствует некоторое небольшое сопротивление сток-исток. Когда транзистор закрыт, по выводам сток-исток протекает ток небольшой величины. Таким образом, мощность потерь в транзисторе в статическом режиме мала. Однако в динамическом режиме, когда транзистор открывается или закрывается, его рабочая точка форсирует линейную область, в которой ток через транзистор может условно составлять половину максимального тока стока, а напряжение сток-исток может достигать половины от максимальной величины. Таким образом, в динамическом режиме в транзисторе выделяется огромная мощность потерь, которая свела бы на нет все замечательные качества ключевого режима, но к счастью длительность нахождения транзистора в динамическом режиме много меньше длительности пребывания в статическом режиме. В результате этого КПД реального транзисторного каскада, работающего в ключевом режиме, может быть очень высок и составлять до 93% – 98%.

Работающие в ключевом режиме транзисторы широко применяют в силовых преобразовательных установках, импульсных источниках электропитания, в выходных каскадах некоторых передатчиков и пр.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».

При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Типы МОП-транзисторов

Униполярные транзисторы делятся на p -канальные или n -канальные. Они могут иметь:

· Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.

· Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n -канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p -канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).

Объемный положительный заряд в оксиде влияет на значение порогового напряжения, при котором отпирается канал. Параметр обусловливает скорость переключения и определяет ток утечки (ниже порога). Вдобавок, на срабатывание влияют материал затвора, толщина оксидного слоя, концентрация примесей. Таким образом, результат опять сводится к технологии. Чтобы получить заданный режим, подбирают материалы, геометрические размеры, процесс изготовления с пониженными температурами. Отдельные приемы позволят также уменьшить количество дефектов, что благоприятно сказывается на снижении паразитного заряда.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector