Palitra21.ru

Домашний уют — журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Учебные материалы

Учебные материалы

Электроэрозионные методы обработки основаны на явлении эрозии электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока.

Разряд между электродами происходит в газовой среде или при заполнении межэлектродного пространства диэлектрической жидкостью (керосин, минеральное масло). При наличии разности потенциалов на электродах происходит ионизация межэлектродного пространства. При определенном значении разности потенциалов – образуется канал проводимости, по которому устремляется электроэнергия в виде импульсного искрового или дугового разряда. На поверхности заготовки температура возрастает до 10000 – 12000°C. Происходит мгновенное оплавление и испарение элементарного объема металла и на обрабатываемой поверхности образуется лунка. Удаленный металл застывает в диэлектрической жидкости в виде гранул диаметром 0,01 – 0,005 мм.

При непрерывном подведении к электродам импульсного тока процесс эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, при котором возможен электрический пробой (0,01 – 0,05 мм) при заданном напряжении. Для продолжения процесса необходимо сблизить электроды до указанного расстояния. Электроды сближаются автоматически с помощью следящих систем.

Общая схема процесса электроискрового легирования

На рис. 1 приведена общая схема процесса ЭИЛ с вибрирующим анодом в виде компактного электрода и изображение образующегося верхнего слоя.

Рис. 1. Схема электроискрового легирования (ЭИЛ): Г.И. – генератор импульсного тока; МЭП – межэлектродный промежуток; ИР – искровой разряд; А – анод; К – катод

Процесс ЭИЛ начинается со сближения анода (электрода) с катодом (деталью). При расстоянии между ними, равном пробивному, начинается развитие искрового разряда длительностью 10–6…10–3с, который во многих случаях завершается при контакте электродов.

При небольших напряжениях между электродами (U Читайте также: Бензиновый генератор: принцип работы, классификация, как выбрать

Недостатками наплавки металлической лентой являются сравнительно низкая прочность сцепления покрытия с основой, тонкий слой наплавленного металла. Увеличить толщину наплавки в данном случае не представляется возможным. Более толстое покрытие позволяет получить ЭКН сварочной проволокой.

Наплавка сварочной проволокой

Электроконтактную наплавку осуществляют на специальной установке (рис. 2.) совместным деформированием наплавляемого металла и поверхностного слоя металла основы, нагретых в очаге деформации до пластического состояния короткими (0,02–0,04 с) импульсами тока 10–20 кА. В результате каждого из последовательных электромеханических циклов процесса на поверхности металла основы образуется единичная площадка наплавленного металла, перекрывающая соседние. Деформация наплавляемого металла за цикл составляет 40 – 60%. Наличие пластической деформации присадочного материала дает возможность повысить прочность сцепления покрытия с основой [7].

Электроконтактную наплавку применяют для ремонта металлических поверхностей и получения биметаллических изделий.

Рис. 2. Схема установки электроконтактной наплавки:

а – начальное состояние; б – конечное состояние; 1 – прерыватель тока; 2 – трансформатор; 3 – наплавляющий ролик, 4 – амортизатор; 5 – присадочная проволока; 5 – образец

Технологические варианты наплавки

Основная технологическая схема.

Сплошной слой металла образуется по этой схеме путем наплавки спиралевидных перекрывающихся по ширине валиков металла (рис. 3.).

Наплавка производится одним наплавляющим роликом. Присадочная проволока додается в зону наплавки и фиксируется с помощью направляющей втулки, жестко закрепленной относительно ролика. Положение каждого витка спиралевидного валика, обеспечивающее перекрытие его с соседним, определяется только скоростью перемещения ролика относительно образующей вращающейся детали.

Рис. 3. Основная технологическая схема электроконтактной наплавки 1 – наплавляемая деталь, 2 – наплавленный металл; 3 – присадочная проволока, 4 – наплавляющий ролик; 5 – трансформатор, 6 – прерыватель тока

При наплавке очередного витка присадочная проволока вследствие деформации контактирует с ранее наплавленным валиком. Присадочная проволока и участок металла предыдущего витка нагреваются током наплавки и совместно деформируются, в результате чего происходит их соединение. Даже при дополнительной цепи тока наплавки, средняя плотность тока на единицу площади контакта присадочная проволока – деталь не снижается, а прочность соединения с металлом второго (и любого последующего) витка не меньше прочности соединения первого витка. Это объясняется тем, что суммарная длина контакта любого поперечного сечения единичной площадки второго витка с учетом контакта с предыдущим валиком не превосходит длины контакта того же сечения первого валика с поверхностью детали.

Основная технологическая схема наплавки проста, надежна и может считаться оптимальной для большой группы изделий.

При наплавке по рассматриваемой технологической схеме размеры внешнего контура изменяются соответственно перемещению наплавляющего ролика, поэтому значения тока в начале и в конце наплавляемого участка различны. В связи с этим изменяются в некоторых пределах прочность на отрыв, усталостная прочность, твердость наплавленного металла.

Недостатком схемы является повышенный местный износ ролика, при его зачистке после наплавки очередного участка удаляется часть поверхности ролика, не участвовавшая в работе, поэтому предпочтительнее последовательное использование всей контактной поверхности ролика.

Основная технологическая схема электроконтактной наплавки проста и надежна, недостатки ее не являются определяющими.

Двухзаходная технологическая схема

. Сплошной слой металла образуется по этой схеме последовательной наплавкой двух спиралевидных валиков с увеличенным шагом (рис. 4.); на поверхности основного металла наплавляют спиралевидный валик с зазором между соседними витками. Второй спиралевидный валик наплавляют в зазор между витками первого спиралевидного валика.

Рис. 4. Двухзаходная схема наплавки:

а – наплавка валика первого захода, б – наплавка валика второго захода

Валик в зазоре между наплавленными витками наплавляют при силе тока несколько большей, чем сила тока наплавки первого валика, вследствие необходимости нагрева поверхностного слоя металла уже наплавленных соседних витков для соединения их с наплавленным валиком.

Двухзаходная схема наплавки не требует изменений установки, так же проста и надежна, как и основная технологическая схема.

Основное ее достоинство – возможность уменьшить тепловыделение наплавкой спиралевидного валика с увеличенным шагом. Кроме того, перед наплавкой второго валика деталь может быть охлаждена в требуемом режиме.•

Меньшее термическое влияние на основной металл при наплавке по двухзаходной технологической схеме сопровождается уменьшением производительности [7].

Двухточечная технологическая схема.

/Клименко Ю. В. Авт. свид. № 407678. – «Открытия, изобретения, пром. образцы, товарные знаки», 1973, № 47, с. 37./

Принципиальные отличия ее – схема включения детали в цепь тока наплавки и последовательность наплавки единичных площадок.

Ток в зону наплавки подводится через два наплавляющих ролика, что позволяет исключить из внешнего контура контактный переход «патрон – металл основы» и уменьшить потери мощности. Особенность этой схемы также и в том, что первым наплавочным роликом наплавляется спиралевидный валик, в котором соседние единичные площадки не перекрываются, а вторым роликом проплавляются образовавшиеся пропуски (рис. 5.). Таким образом, одним импульсом тока наплавляются две диаметрально противоположные площадки металла.

Технологические показатели

Такой широкий диапазон регулировок показывает, что электроискровая обработка металла может использоваться в различных областях, как для производства крупных серий деталей, так и для разовых работ, включая ювелирные.

Особенностью применения электроискровых установок можно считать возможность укрепления деталей различной конфигурации. На поверхность заготовки наноситься тончайший слой более прочного сплава или металла без нагрева основания на большую глубину. Это позволяет сохранить структуру металла базового изделия и значительно изменить свойства его поверхности. В некоторых случаях требуется вязкость основания и высокая твердость поверхности, или в обратном порядке. Решить эту задачу может только электроискровой станок.

Суть и характеристика метода

Электроэрозия — это изменение формы и структуры поверхности детали, при воздействии электрического разряда. Одним из электродов является инструмент, другим — деталь из проводящих материалов. При сближении их образуется электрический разряд. Разряды производятся импульсно, для этого используется генератор импульсов. Работа производится в среде жидкого диэлектрика, который повышает силу разряда. В качестве диэлектрика применяются различные минеральные масла и керосин. В результате разряда образуется электрическая дуга. Для электродов можно выбирать разные материалы:

  • вольфрам;
  • уголь;
  • медь;
  • латунь.

Ток нагревает электрод, происходит испарение диэлектрика и образование газового пузыря. При действии разряда большой мощности температура в газовом пузыре повышается до тысяч градусов, происходит расплавление электродов и выброс металла.

Электроэрозионная обработка применяется в следующих процессах:

  • Абразивное шлифование. Состоит в разрушении металлической заготовки с помощью абразивной обработки и электроэрозии.
  • Электроэрозионно-химическое шлифование — применение электроискровой эрозии и анодного растворения в среде электролита.
  • Анодно-механический способ электрообработки характеризуется комплексным электрохимическим и механическим способами воздействия, при котором растворяется материал заготовки, а образующаяся окисная плёнка удаляется механическим способом.
  • Прошивание — способ прошивки отверстий в твёрдых материалах электроэрозионным методом.
  • Электроэрозионное упрочнение позволяет улучшить прочностные характеристики поверхности заготовки.
  • Объёмное копирование позволяет производить копирование формы электрода-инструмента.
  • Электроэрозионная резка металла позволяет получить высокую точность.
Читать еще:  Чертежи и 3D-модели дробильного оборудования

Электрообработка производится с прямой и обратной полярностью.

Электроискровая обработка металлов

При электроискровой обработке деталь является анодом, а инструмент — катодом. При этой полярности сильно разрушается электрод-инструмент. Для предотвращения разрушения на него подаётся короткий отрицательный импульс с длительностью не более 0,001 сек. Метод используется в основном для чистовой обработки. Он позволяет прошивать отверстия, производить очистку поверхностей и шлифовать детали из материалов повышенной твёрдости.

Электроимпульсная обработка

При электроимпульсной обработке применяется обратная полярность. Деталь является катодом. При образовании дугового разряда обработка детали осуществляется ионным потоком, направляющимся в сторону детали. Это обеспечивает хорошую производительность при съёме металла, но значительно меньшую точность. Используется этот метод при черновой обработке заготовок.

Электроэрозионная резка применяется при необходимости изготавливать сложные по конфигурации детали из высокопрочных сплавов. Установки для резки используются при необходимости серийного изготовления изделий с высокой точностью.

Недостатки

  • Нельзя обрабатывать диэлектрические материалы. Электрическая дуга, которая создает высокотемпературную плазму, возникает за счет контакта электрода с металлической поверхности обрабатываемой деталью. Если деталь будет выполнена из диэлектрического материала (дерево, бетон, пластик), то в таком случае режущая дуга не возникнет, а станок будет бесполезен.
  • Высокое электропотребление. Для работы ЭЭО-станка требуется большое количество электроэнергии, что увеличивает себестоимость обработки. Во время работы станка должны поддерживаться постоянные параметры электрического тока (напряжение, мощность, сила). Поэтому многие установки оборудуются защитным оборудованием, позволяющего изменить параметры станка в случае скачка напряжения.
  • Низкая производительность. Большинство моделей станков проводят резку с небольшой скоростью (от 0,1 до 7-8 миллиметров в секунду в зависимости от способа обработки металла). Поэтому ЭЭО-станки не подходят для фабрик с большой производственной загруженностью.
  • Высокая стоимость. ЭЭО-оборудование стоит достаточно дорого, что снижает его универсальность и доступность. Большинство станков производятся иностранными компаниями (Япония, Германия, Польша), что также негативно влияет на ценообразование. Помимо этого придется оплачивать вспомогательные расходы — на покупку защитной жидкости, на замену отработанных электродов, на потребление электричества и другие.

Конструкция станка

Основные элементы электроэрозионного станка:

  • станина — выполняется из специального особо прочного чугуна, придающего крепость и устойчивость конструкции.
  • рабочий стол — прямоугольной формы из нержавеющей стали;
  • рабочая ванна из нержавейки;
  • устройство подачи проволоки состоит из приводных катушек (керамика), направляющих для проволоки и системы привода;
  • устройство автоматической установки проволоки (устанавливается по желанию заказчика);
  • блок диэлектрика состоит из картонных или бумажных фильтров, емкости диэлектрика и емкости для ионообменной массы, насоса для прогонки воды;
  • генератор используется антиэлектролизный, который предупреждает разрушение заготовки;
  • система числового программного управления с дисплеем.

Суть электроэрозионной обработки

Электроэрозия представляет собой изменение структуры и формы металла путем воздействия электрического разряда. Она возникает при создании напряжения между электродами. Одним из них служит изделие из металла, а вторым – рабочий электрод.

Если по электродам пропускать ток, то в пространстве между ними возникнет напряжение за счет электрического поля. При сближении расстояния между электродами до критического возникнет разряд, служащий проводящим каналом электричества.

Чтобы повысить силу разряда электроды помещаются в жидкость, являющуюся диэлектриком, в качестве которой используют различные масла минерального характера или керосин. Проходящий по образованному каналу ток, нагревает диэлектрическую жидкость, доводя ее до кипения и последующего испарения с образованием газового пузыря. Внутри этого пузыря возникает мощный разряд, сопровождающийся потоком электронов и ионов.

Бомбардируя электрод, они создают плазменный поток. В результате в зоне разряда температура повышается до 10000–12000°C и мгновенно расплавляет металл с образованием эрозионного углубления в виде лунки. Значительная часть расплава испаряется, а на поверхности металла в лунке после его остывания остается слой, состав которого отличается от состава исходного металла.

На рисунке (ниже) показана лунка, возникшая при воздействии электрического импульса, где: 1– объем лунки, 2– легированный слой, 3 – луночный валик, 4– металлическая деталь.

В состав поверхностного слоя входят компоненты не только испарившейся жидкости, насыщающие металл углеродом с образованием карбидов железа, но и элементы расплава металла рабочего электрода.

В результате такой электроэрозионной обработки стальные заготовки в месте воздействия можно легировать такими элементами, как хром, титан, вольфрам и другими. Такое легирование значительно упрочняет поверхность металлической заготовки в месте электроэрозионной обработки.

Электроэрозионная резка

Наиболее востребованной является электроэрозионная резка металлов. Ее сущностью является действие на металлическую заготовку искровых электрических разрядов, образованных при протекании в электродах импульсного тока, при их максимальном сближении и нахождении в жидкой среде диэлектрика.

Таким образом, для проведения электроэрозионной резки на протяжении всего процесса резания нужно обеспечить:

  • подачу напряжения к электродам в виде импульсов;
  • периодически сокращать между электродами расстояние до критического размера;
  • обеспечить наличие жидкой среды (керосина или масла).

При обеспечении таких условий из металлической детали под влиянием высокой температуры, возникающей за счет действия разрядной дуги, выбиваются частицы, которые затем вымываются диэлектрической жидкостью. Диэлектрик также выполняет функцию катализатора распада частиц металла, т. к. при высоких температурах испаряется.

Поскольку единичный разряд должен происходить с периодическим постоянством в виде краткосрочных искр, чтобы достичь разрезания заготовки по намеченному контуру, нужно соблюдать определенный режим работы. Различают два режима обработки: электроискровой и электроимпульсный вид.

Электроискровая обработка

При режиме электроискровой обработки заготовок проводится с использованием кратковременных разрядов, происходящих в форме искр через диэлектрическую жидкость.

При таком режиме соблюдается следующая схема подачи импульсов:

  • обрабатываемая заготовка служит анодом с положительным зарядом, к которой устремляется поток электронов с рабочего электрода.
  • ионы металла детали воздействуют на рабочий электрод. Чтобы он не разрушился, используют импульсное напряжение на протяжении 10-3 с.

Электроимпульсная обработка

При режиме электроимпульса заготовка служит катодом с отрицательным импульсом, который действует доли секунды. Создается дуговой разряд, направляющий поток ионов в сторону детали. В таком режиме обеспечивается большая скорость металлического съема, но чистота обработки металла хуже, чем при электроискровом режиме.

При электроэрозионной резке используются искровые разряды, которые обеспечиваются импульсами электрического тока, вырабатываемого генератором специального станка, предназначенного для такой обработки.

Электроэрозионный станок

Упрощенно работа на электроэрозионном станке происходит так:

  1. Импульсный ток подается деталь и проволочный электрод из молибдена. Также могут быть использованы вольфрам, латунь, медь и другие металлы.
  2. Одновременно с подачей импульсного тока на электрод происходит перемещение детали с помощью направляющих станка ЧПУ в нужном направлении.
  3. Возникающие искровые импульсы разрядов выжигают область металла в месте разреза.
  4. Расплавленный металл смывается охлаждающей жидкостью.
  5. При работе обеспечивается одновременное перемещение проволоки, намотанной на специальный барабан.

Электроэрозионное оборудование включает:

  • станок, на котором осуществляется операция;
  • генератор напряжения, обеспечивающий импульсный режим;
  • устройство подачи диэлектрической жидкости и ее очистки;
  • систему откачки из рабочей области образованных газов.

Непосредственно станок состоит из:

  • основания в виде станины;
  • ванны, размещенной на столе;
  • головки шпинделя;
  • пульта для управления процессом;
  • системы обеспечения подачи импульсов на деталь;
  • системы автоматической регулировки процессов.

Встречаются станки, которые могут иметь некоторое отличие в устройстве. Например, могут иметь систему очистки в виде отдельного устройства.

Импульсные генераторы являются отдельными агрегатами, размещенными рядом с основным станком. Есть виды устройств, в которых генератор встроен в станок.

Упрощенный вариант электроискрового станка не включает систему подачи жидкости и ее очистки. Обработка включает погружение стола с деталью заготовки в воду, находящуюся в ванне. Если обработка проводится с использованием керосина, то образующиеся газы удаляются через общую вентиляцию.

При эксплуатации этого оборудования требуются квалификация и знание технологического процесса, которые позволят выполнять процесс с соблюдением всех требований, отраженных в документации.

В настоящее время широкое развитие получили 3 типа электроэрозионной обработки:

  1. Вырезание проволокой
  2. Прошивка электродом
  3. Сверление тонких глубоких отверстий
Читать еще:  Ламельный фрезер: технические характеристики и отзывы

Все эти операции показаны ниже на видео.


DK 7732 в г.Тольятти. Точность станка оказалась 7 мкм, при паспортной 12. Отчет, согласованный с Заказчиком здесь.

Смотрите еще примеры изделий, полученных электроэрозионной обработкой.

Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в жидкий диэлектрик, то при их сближении (увеличении напряжения) происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.

Так как длительность используемых в данном методе обработки электрических импульсов не превышает 10 —2 сек, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого (рис. 1). Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов — их длительностью, частотой следования, энергией в импульсе. Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.

Электроэрозионные методы особенно эффективны при обработке твёрдых материалов и сложных фасонных изделий. При обработке твёрдых материалов механическими способами большое значение приобретает износ инструмента. Преимущество электроэрозионных методов, как и вообще всех электрофизических и электрохимических методы обработки, состоит в том, что для изготовления инструмента используются более дешёвые, легко обрабатываемые материалы. Часто при этом износ инструментов незначителен.

Например, при изготовлении некоторых типов штампов механическими способами более 50% технологической стоимости обработки составляет стоимость используемого инструмента. При обработке этих же штампов электроэрозионными методами стоимость инструмента не превышает 3,5%. Условно технологические приёмы электроэрозионной обработки можно разделить на прошивание и копирование. Прошиванием удаётся получать отверстия диаметром менее 0,3 мм,что невозможно сделать механическими методами. В этом случае инструментом служит тонкая проволочка. Этот приём на 20—70% сократил затраты на изготовление отверстий в фильерах, в том числе алмазных. Более того, электроэрозионные методы позволяют изготовлять спиральные отверстия. При копировании получила распространение обработка ленточным электродом. Лента, перематываясь с катушки на катушку, огибает копир, повторяющий форму зуба. На грубых режимах лента «прорезает» заготовку на требуемую глубину, после чего вращением заготовки щель расширяется на нужную ширину. Более распространена обработка проволочным электродом, то есть лента заменяется проволокой. Этим способом, например, можно получать из единого куска материала одновременно пуансон и матрицу штампа, причём их соответствие практически идеально.

Разрушение поверхностных слоев материала под влиянием внешнего воздействия электрических разрядов называется электрической эрозией. На этом явлении основан принцип электроэрозионной обработки.

Электроэрозионная обработка заключается в изменении формы, размеров, шероховатости и свойств поверхности заготовки под воздействием электрических разрядов в результате электрической эрозии.

Под воздействием высоких температур в зоне разряда происходят нагрев, расплавление, и частичное испарение металла. Для получения высоких температур в зоне разряда необходима большая концентрация энергии. Для достижения этой цели используется генератор импульсов. Процесс электроэрозионной обработки происходит в рабочей жидкости, которая заполняет пространство между электродами; при этом один из электродов — заготовка, а другой — электрод-инструмент.

Под действием сил, возникающих в канале разряда, жидкий и парообразный материал выбрасывается из зоны разряда в рабочую жидкость, окружающую его, и застывает в ней с образованием отдельных частиц. В месте действия импульса тока на поверхности электродов появляются лунки. Таким образом осуществляется электрическая эрозия токопроводящего материала, показанная на примере действия одного импульса тока, и образование одной эрозионной лунки.

Материалы, из которых изготавливается электрод-инструмент, должны иметь высокую эрозионную стойкость. Наилучшие показатели в отношении эрозионной стойкости электродов-инструментов и обеспечения стабильности протекания электроэрозионного процесса имеют медь, латунь, вольфрам, алюминий, графит и графитовые материалы.

Общая характеристика процесса электроэрозионной обработки

Типовой технологический процесс электроэрозионной обработки на копировально-прошивочных станках заключается в следующем:

  • Заготовку фиксируют и жестко крепят на столе станка или в приспособлении. Тяжелые установки (весом выше 100 кг) устанавливают без крепления. Устанавливают и крепят в электродержателе электрод-инструмент. Положение электрода-инструмента относительно обрабатываемой заготовки выверяют по установочным рискам с помощью микроскопа или по базовым штифтам. Затем ванну стакана поднимают и заполняют рабочей жидкостью выше поверхности обрабатываемой заготовки.
  • Устанавливают требуемый электрический режим обработки на генераторе импульсов, настраивают глубинометр и регулятор подачи. В случае необходимости включают вибратор и подкачку рабочей жидкости.
  • В целях повышения производительности и обеспечения заданной шероховатости поверхности обработку производят в три перехода: предварительный режим — черновым электродом-инструментом и окончательный — чистовым и доводочным.
    4.1 Типовые операции электроэрозионной обработки

Прошивание отверстий

При электроэрозионной обработке прошивают отверстия на глубину до 20 диаметров с использованием стержневого электрода-инструмента и до 40 диаметров — трубчатого электрода-инструмента. Глубина прошиваемого отверстия может быть значительно увеличена, если вращать электрод-инструмент, или обрабатываемую поверхность, или и то и другое с одновременной прокачкой рабочей жидкости через электрод-инструмент или с отсосом ее из зоны обработки. Скорость электроэрозионного прошивания достигает 2-4 мм/мин.

Маркирование

Маркирование выполняется нанесением на изделие цифр, букв, фирменных знаков и др. Электроэрозионное маркирование обеспечивает высокое качество, не вызывает деформации металла и не создает зоны концентрации внутреннего напряжения, которое возникает при маркировании ударными клеймами. Глубина нанесения знаков может колебаться в пределах от 0,1 до 1 мм.

Операция может выполняться одним электродом-инструментом и по многоэлектродной схеме. Изготавливаются электроды-инструменты из графита, меди, латуни, алюминия.

Производительность составляет около 3-8 мм/с. Глубина знаков зависит от скорости движения электрода. При скорости движения электрода более 6 мм/с четкость знаков ухудшается. В среднем на знак высотой 5 мм затрачивается около 4.

Вырезание

В основном производстве электроэрозионное вырезание применяют при изготовлении деталей электро-вакуумной и электронной техники, ювелирных изделий и т.д. в инструментальном производстве, при изготовлении матриц, пуансонов, пуансонодержателей и других деталей, а также вырубных штампов, копиров, шаблонов, цанг, лекал, фасонных резцов и др.

Шлифование

Процесс электроэрозионного шлифования применяют для чистовой обработки труднообрабатываемых материалов, магнитных и твердых сплавов.

Отклонение размеров профиля после электроэрозионного шлифования находится в пределах от 0,005 до 0,05 мм, шероховатость Ra = 2,50,25, производительность — 260 мм2/мин.

С появлением электрических способов обработки оказалось в принципе возможным осуществление методами электротехнологии всего комплекса операций, необходимых для превращения заго­товки в готовую деталь, включая и ее термическую обработку.

Электроэрозионная обработка

Электроэрозионная обработка основана на тепловом действии импульсных электрических разрядов, возбуждаемых между электродами-инструментами и обрабатываемой заготовкой.

Обрабатываемость металла и сплавов зависит от их теплофизических свойств и электрических параметров процесса. Механические характеристики обрабатываемых металлов не влияют на интенсивность его съема.

Рис. 1. Схема процессов электроискровой и электроимпульсной обработки: ГИ — генератор импульсов: балластное сопротивление; Э — инструмент-электрод; s — подача электрода-инструмента; Д — обрабатываемая деталь

Электроэрозионная обработка металлов в зависимости от вида применяемых разрядов, их параметров и способов генерирования, взаимосвязи генератора и нагрузки, а также рабочей среды подразделяется на четыре основные разновидности: электроискровую, электроимпульсную, анодно-механическую и электроконтактную. Из них первые три получили широкое применение.

Электроискровая обработка

Электроискровая обработка основана на использовании искровых или искродуговых разрядов малой длительности (от долей микросекунды до нескольких сот микросекунд), которые следуют с большой скважностью; обрабатываемая деталь погружена в диэлектрическую жидкость. Схема электроискровой обработки показана на рис. 1.

Для получения наименьшего износа электрода-инструмента и наибольшей скорости съема металла с заготовки электрод-инструмент подключается к отрицательному полюсу электрического зависимого или ограниченно зависимого генератора импульсов, а обрабатываемая заготовка — к положительному. Максимальная мощность, вводимая в зону обработки, достигает 1 -1,5 квт, наибольшая энергия импульсов 4-5 дж, затраты электроэнергии на съем 1 кг металла 40-50 квт-час.

Читать еще:  Паспорт на горизонтально-расточной станок 2А622Ф1-1

Электроимпульсная обработка

Электроимпульсная обработка основана на использовании импульсных дуговых разрядов малой скважности, большой энергии и длительности (до десятка тысяч микросекунд) при предварительной обработке и малой энергии при высокой частоте и малой скважности при чистовой обработке. Возбуждение разрядов осуществляется электрическим независимым генератором; рабочей средой является жидкий диэлектрик.

Съем металла осуществляется, в основном, в капельно-жидком состоянии, что снижает энергоемкость процесса до 3-12 квт-час/кг. Полярность — обратная по отношению к электроискровому процессу (анод — электрод, катод — обрабатываемая заготовка); более заметно относительное влияние теплофизических свойств металлов на их обрабатываемость. Наибольшая вводимая в зону обработки мощность достигает в этом случае десятков киловатт и ограничена мощностью имеющихся в настоящее время источников питания, а энергия импульсов — 300 дж и выше.

Pиc. 2. Схемы электроэрозионного формообразования, применяемые при электроимпульсной обработке: а — с прямолинейным поступательным перемещением электрода-инструмента; б — с круговыми поступательными перемещениями электрода-инструмента; в — нитевидным электродом-инструментом; г — обкаткой заготовки электродом-инструментом; д — вращающимся электродом-инструментом; е — электродом-инструментом, совершающим винтовые движения; ж — электродом-инструментом, охватывающим часть поверхности вращающейся заготовки; з — нитевидным электродом-инструментом, конец которого совершает поступательное движение вдоль поверхности заготовки

Электроискровой и электроимпульсный методы принципиально позволяют осуществлять обработку по всем схемам формообразования, которые встречаются при обработке на металлорежущих станках. Однако наиболее часто применяется схема обработки при прямолинейном поступательном движении электрода-инструмента (или заготовки) по принципу прошивания с объемным копированием формы электрода (рис. 2, а). На чистовых режимах схема прошивания часто применяется в измененном виде (рис. 2, б).

Перспективны применяемые схемы вырезания электродом-проволокой (рис. 2, в) и огибания фасонным электродом обрабатываемой поверхности (рис. 2, г). Применяется также электроэрозионная обработка вращающимся электродом, выполненным в виде тела вращения (рис. 2, д); электродом-инструментом, получающим винтовые движения (рис. 2, е); электродом-инструментом, рабочая поверхность которого охватывает вращающуюся заготовку (рис. 2, ж); электродом-инструментом в виде нити (проволоки), конец которой совершает поступательное движение вдоль образующей вращающейся заготовки (рис. 2, з).

Каждому значению энергии при электроискровой и электро- импульсной обработке соответствует своя оптимальная площадь обработки, на которой получают наилучшее сочетание стойкости электрода-инструмента, качества обработанной поверхности и производительности.

Обработку электроискровым методом с оптимальным сочетанием вводимой энергии и площади можно осуществлять для поверхностей размером до 0,5-5 см2, а при электроимпульсной обработке до 260-300 см 2 . При этом скорость углубления электрода-инструмента в обрабатываемую заготовку (прошивание) составляет 0,3-0,8 мм/мин. Максимальная скорость съема при электроискровой обработке стали прошиванием составляет 500-600 мм3/мин, твердого сплава -100 мм 3 /мин. Электроимпульсный метод позволяет получать скорость съема при обработке стальных заготовок до 10 000-12 000 мм 3 /мин, твердосплавных — 150-220 мм3/мин. Максимальная скорость вырезания электродом-проволокой составляет 10-12 мм 2 /мин.

При обработке небольших поверхностей (до 2-3 см2) электроискровым способом можно получить у стальных деталей шероховатость поверхности 6-7, твердосплавных — 7-8. В некоторых случаях обработки на режимах с низкой производительностью (до сотых долей мм3/мин) получают поверхности стальных деталей с шероховатостью 8 и твердосплавных — до 9. При электроимпульсной обработке стальных заготовок площадью до 200-300 см2 шероховатость поверхности 5-6.

Относительный износ инструмента электроискровых станков при обработке стали составляет 25-100%, электроимпульсных- 0,05-0,5%.

Электроискровой метод применяется преимущественно для прецизионной обработки небольших деталей, особенно изготовляемых из тугоплавких металлов и сплавов, твердых сплавов, цветных металлов и их сплавов.

Электроимпульсный метод используется для обработки поверхностей площадью до 1000 см2 у стальных деталей и деталей, изготовляемых из жаропрочных сплавов, а также для обработки деталей из магнитных сплавов, титана и его сплавов, предварительного профилирования некоторых твердосплавных деталей и т. п.

Благодаря применению новых широкодиапазонных генераторов характеристики электроимпульсной и электроискровой обработки синтезируются в одном станке.

Анодно-механическая обработка

Анодно-механическая обработка представляет собой комбинированный процесс анодного растворения и электроэрозионного воздействия на обрабатываемую заготовку при движущемся относительно обрабатываемой поверхности электроде-инструменте. Схема этого процесса показана на рис. 3. Рабочей средой служит электролит, дающий пассивирующую пленку на аноде (обычно водный раствор жидкого стекла). Источник питания — выпрямитель с рабочим напряжением на выходе 22-26 в. Электрод-инструмент подключается к отрицательному, а обрабатываемая деталь — к положительному полюсу.

Электрод-инструмент выполняется в виде диска или бесконечной ленты из низкоуглеродистой стали. Мощность, вводимая в зону обработки, до 20 квт, затраты электроэнергии на съем 1 кг металла 7-8 квт-час.

Рис. 3. Схема анодно-механической обработки: Е — источник постоянного напряжения; R — токоограничивающее сопротивление; 1 — инструмент (катод); 2 — деталь (анод); 3 — подача электролита

Анодно-механическая обработка применяется в основном для разрезания заготовок из высоколегированных сталей и труднообрабатываемых сплавов толщиной до 1000 мм, а также находит некоторое применение для шлифования твердосплавных деталей типа втулок.

Скорость разрезания диском — до 15-35 см2/мин, лентой — до20 см2/мин; шероховатость поверхности соответствует 1-3 при разрезании и до 7-8 при шлифовании; относительный износ инструмента 15-25%.

Ширина прорези на дисковых станках 1,5-3 мм, на ленточных- 1-2 мм. Величина измененного слоя на поверхности реза при различных условиях обработки колеблется от 0,05 до 0,6 мм.

Производительность

Станок имеет скорость процесса снятия слоя материала ниже, чем у механического оборудования. Выигрыш времени в том, что конечный результат по сложности, выдержке формы, сравним с работой 5 фрезерных станков.

Величина производительности определяется, как объем снятого материала (мм³) в единицу времени (мин) при подведенном токе в 1 А. Каждый состав электролита имеет свой показатель. Хлористый натрий, например, имеет значение 2,2 мм³/мин, азотнокислый натрий – 1,1 мм³/мин. Использование состав из нескольких реагентов увеличивает скорость растворения анода, повышает степень обработки.

Нужно выдерживать установленные зазоры (боковой, торцевой) между электродом и заготовкой. Учитываются напряжение, скорость подачи, конструкция рабочего органа, электропроводность раствора.

Производительность повышают, применяя методы многоэлектродного воздействия на площадь детали.

Резка

Увеличение плотности тока приводит к более интенсивному процессу съема металла с поверхности. Выравнивая скорость растворения с подачей катода, получают непрерывный процесс прорезывания канавок в материале. Удаление продуктов реакции обеспечивают непрерывным потоком прокачиваемой жидкости. В качестве электрода выступает проволока, перематываемая с одного барабана на другой.

Прошивание

Метод сходен резке, но электрохимический процесс происходит в основном на торце катода, который подается с равной скоростью. В этой операции электрод должен иметь достаточную жесткость, чтобы не воспринимать вибрацию, которая может передаваться через станок, не деформироваться при движении. Рабочая его часть способствует поддержанию устойчивого потока электролита в зазоре. Не рабочие края надежно изолируют.

Точность обработки плоскости металла составляет ±0,13 мм, отверстий 0,1 – 0,15 мм.

Станок может быть оборудован следящей за параметрами системой.

Копирование

Форма электродов в этом случае совпадает. Зазор выдерживают в расчетном значении. В результате электрохимической реакции, материал разрыхляется, вымывается в не совпадающих местах. В точках, где зазор меньше процесс идет интенсивнее, металл растворяется сильнее. В результате промежуток становится одинаковым, происходит электрохимическое копирование формы металлов обрабатываемых деталей (с допустимыми припусками из-за трудности контроля в малом зазоре). Точность достигаемого копирования от 0,5 мкм до 3 мкм, повторяемость параметров 0,5 — 10 мкм от электрода – эталона в партии.

Распространены универсальные варианты станка для электрохимической обработки металлов – копировально-прошивочные с широкой номенклатурой изделий. Область применения – твердосплавная обработка: инструмент, штампы, пуансоны.

Размерная

Эта технология предназначена для получения у детали требуемой формы, размера. Процедура выполняется при условии скоростного, непрерывного обновления электролитической среды в зоне действия полюсов. Принудительную прокачку ведут под давлением, создаваемым насосом. Постоянный поток жидкости позволяет уменьшать величину зазора между обрабатываемыми металлами. Сопротивление среды снижается, плотность тока растет, электрохимическая реакция ускоряется.

Заточка

Использованы особенности электрохимических явлений при растворении кромки металлов. Получение острия происходит в неравномерном электрическом поле при постоянном перемещении. Регулируя угол наклона, получают заточку заданной формы (наконечники, иглы, электроды). Используют, в основном, соли натрия при плотности тока 4-7 А/см², напряжение 8 — 15В.

Технология электрохимической обработки

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector