Palitra21.ru

Домашний уют — журнал
27 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фрезерные станки по металлу

Фрезерные станки по металлу

Процесс обработки металлических заготовок, при котором режущий инструмент выполняет вращательное движение, а заготовка, закрепленная на столе, возвратно-поступательное, получил название фрезерование. Станки, которые могут использоваться с учетом приведенных условий обработки, называют фрезерными. Официально принято считать, что первый фрезерный станок по металлу был изобретен в 1818 году. Эли Уитни первый получил патент на изобретение, которое стало основой для создания целой группы в сфере металлообработки.

Шпоночно-фрезерный станок мод. 692Д

Цена: договорная Заказать

Станок шпоночно-фрезерный модели 692Д, предназначенный для обработки шпоночных пазов мерными и немерными шпоночными фрезами.

На станке могут обрабатываться шпоночные пазы шириной от 4 до 28 мм в полуавтоматическом цикле.

Обработка пазов от 4 до 6 мм ведется маятниковым циклом мерным инструментом, а с 6 до 28 мм – на полную глубину за один проход с последующей калибровкой ширины немерным инструментом.

Применение имеющегося на станке устройства калибровки обрабатываемого паза обеспечивается соблюдение точности ширины шпоночного паза независимо от точности диаметра применяемых фрез (начиная с диаметра 6 мм).

На станке 692Д диапазон частот вращения шпинделя позволяет вести обработку шпоночных пазов как быстрорежущими фрезами, так и твердосплавными на всем диапазоне ширины пазов с высокой производительностью.

Комплектация

Фото шпоночно-фрезерного станка 692Д

Фото шпоночно-фрезерного станка 692Д

Фото шпоночно-фрезерного станка 692Д

Фото шпоночно-фрезерного станка 692Д

Фото шпоночно-фрезерного станка 692Д

Прочие фрезерные станки

Рассмотрим другие фрезерные станки, которые составляют меньшую группу по сравнению с двумя образцами, описанными выше.

1. Бесконсольные фрезерные станки (рис. 5). Могут быть как с вертикальным, так и с горизонтальным расположением шпинделя. Служат для более простой фрезерной обработки металлов и дерева в плане сложности самих фрезерных операций. Не имеет настроек по высоте подъема стола ввиду отсутствия консоли. Преимуществом является повышенная точность обработки.

Рисунок 5. Бесконсольный фрезерный станок.

2. Продольно-фрезерный станок (рис. 6). Предназначен для продольного фрезерования деталей большой длины или деталей, которым необходима простая прямолинейная обработка. Также эти станки могут работать со шлифовальными кругами.

Рисунок 6. Продольно-фрезерный станок.

3. Шпоночно-фрезерный станок (рис. 7.). Предназначен для прорезания шпоночных пазов на заготовках различной формы. Работают такие станки в автоматическом режиме после задания параметров шпоночного паза.

Рисунок 7. Шпоночно-фрезерный станок.

4. Зубофрезерный станок (рис. 8). Используется для создания зубьев различных параметров. Для этих станков применяются специальные фрезы, предназначенные под создание определенных профилей зубчатых колес и червячных передач.

Как работает фрезерный станок?

24 Сентября 2019

Фрезерный станок предназначен для обработки ровных и неровных поверхностей: кромок, пазов, канавок.

Фрезер незаменим при создании высокохудожественных изделий из любых пород дерева, фанеры, пластика, оргстекла, мягких металлов и др.

Чтобы разобраться, как работает фрезерный станок рассмотрим его конструкцию на примере нашей модели Orson 1325.

Конструкция фрезерного станка ЧПУ Orson 1325:

1. Станина – основание, на которое устанавливается стол и портал. Чем больше ребер жесткости имеет станина и толще сталь, тем дольше и точнее будет работать станок.

2. Стол – поверхность, куда крепится заготовка для обработки. Стол может быть:

  • алюминиевый с покрытием бакелит и креплением Т-паз;
  • вакуумный с ячеистой поверхностью с креплением присосками и вакуумной помпой;
  • гибридный вакуумный стол с креплением Т-паз.

Для обработки металла и камня используется алюминиевый стол, во всех остальных случаях покупатели отдают предпочтение гибридному столу, т.к. он лучше закрепляет заготовки.

3. Портал – конструкция, установленная на рабочий стол. Передвигается по направляющим с помощью двигателей (шаговых или серво).

4. Шпиндель – вал, куда устанавливается фреза в цанге. Шпиндель бывает с водяным и воздушным охлаждением и крепится на портале станка.

5. Блок управления – специальный шкаф, куда устанавливаются драйверы, инвертор, контроллеры, системы электрораспределения.

6. Программа управления – устанавливается на персональный компьютер и подключается к блоку управления фрезера. Для управления 3х-осевым станком используют программу NC Studio, для 4-х, 5-ти осевых, с асинхронной работой шпинделей, автосменой инструмента применяется Syntec.

Принцип работы фрезерного станка. 7 фактов.

  1. Обработка материала производится с помощью фрезы, которая устанавливается в цангу. Фреза способна шлифовать, сверлить, гравировать, раскраивать заготовку. В комплекте со станком обычно поставляется набор от 5-ти фрез для черновой и чистовой обработки.
  2. Цанга с фрезой устанавливается в шпиндель, который крепится на портале.
  3. Портал передвигает шпиндель с фрезой по трем осям над заготовкой, расположенной на рабочем столе.
  4. Движение шпинделя и портала по осям обеспечивают двигатели (обычно шаговые, в количестве 3 шт).
  1. Для того, чтобы механическая часть выполняла нужные команды используется управляющая программа (NC Studio), поддерживающая 3 оси, 3 концевых датчика и управление шпинделем. Состоит из интерфейсной платы, платы развязки и программного обеспечения, которое устанавливается на ПК.
  2. Перед началом производства оператор ЧПУ создает проект изделия в графическом редакторе (AutoCad, ArtCam, CorelDraw) и сохраняет в G-коде.
  3. Далее файл загружается в NC Studio, которая его визуализирует и подает соответствующие команды механической части.

Таким образом, принцип работы фрезерного станка с ЧПУ заключается в том, что:

  • оператор создает команду в программе на ПК,
  • программа передает импульс на фрезу
  • фреза обрабатывает материал по заданной команде.

ЧПУ автоматизирует процессы обработки, повышает скорость производства и минимизирует брак. От того как работает фрезер зависит качество изделий, и, в итоге, ваша прибыль.

Нужна консультация?

Оставьте заявку, инженер перезвонит вам течение 5-ти минут.

Типы шпоночно фрезерных станков

По расположению шпинделей и их числу шпоночно фрезерные станки подразделяются на горизонтальные и вертикальные, одношпиндельные станки и многошпиндельные станки.

На рис. 2 показан вертикальный двухшпиндельный шпоночно фрезерный станок ДФ-82Д, работающий мерным инструментом по маятниковому циклу. Станок имеет две шпиндельные бабки 1, станину 4, консоль 3, которую при наладке можно вручную перемещать вертикально на 300 мм, стол 2, перемещаемый в поперечном направлении вручную.

Читать еще:  Самодельный прошивень для пробивки отверстий в металле

На этом станке можно фрезеровать одновременно два шпоночных паза шириной от 3 до 20 и длиной до 300 мм. В конце каждого продольного хода происходит врезание на глубину не более чем на 0,6 мм при скорости продольной подачи в пределах 450-1200 мм/мин. Благодаря небольшой глубине резания стойкость фрезы очень велика, и она редко выходит из строя, обеспечивая высокую точность и чистоту обработки.

Рис. 2. Вертикальный двухшпиндельный шпоночно фрезерный станок ДФ-82Д.

Работаем с фрезером станком правильно

Первоначально необходимо подобрать максимально подходящую фрезу. Она должна соответствовать выполняемой задаче и материалу, который предназначается в обработку.

После чего насадку фиксируют на станке в специальном «патроне». Фиксация должна быть плотной.

Проводятся настройки инструмента: глубина фрезерования, скорость и все прочие. Станки с ЧПУ программируются и это довольно сложный процесс.

Рукоятку ставим в нужное положение и запускаем станок в работу.

Фрезер можно держать в руках, если он ручной, или зафиксировать его в специальной стойке, которую нетрудно изготовить самостоятельно. Она является универсальной и с успехом применяется, как основа того же сверлильного станка и многих других в домашней мастерской.

Рабочая часть его, при стационарной установке, должна находиться сверху. Не забывайте для безопасной и более качественной работы использовать лекало.

Область применения ручного фрезера

Фрезерные приспособления в основном используются для обработки дерева и выполнения столярных работ, однако, современные фрезеры способны работать с цветными металлами, пластмассой, камнем и стеклом. Изначально для фрезеровки применялись стационарные модели, которые занимали много места и использовались в основном на массовом производстве. Ручные фрезеры компактные и универсальные. Ручные фрезеры подходят для самостоятельных работ дома, они укомплектованы разными фрезами и насадками для создания отверстий. Ручной фрезер применяется:

  • для создания отверстий на обрабатываемой поверхности;
  • для создания выемок необходимой формы;
  • для выреза дверных петель;
  • для создания декоративных узоров;
  • для подгонки соединяемых деталей по размеру.

Различают разные виды ручных фрезеровочных станков. Каждый вид применяется в определенной области работ. Рассмотрим подробнее виды и область их применения.

  1. Вертикальный или погружной фрезер. Применяется для вырезки отверстий, пазов, углублений и тд. Простой в использовании инструмент, не требует особых навыков при работе.
  2. Окантовочный фрезер. Снятие фаски с поверхности, создание выемок и выбор пазика. Отличием от других видов является способность обрабатывать поверхности с ламинатом. Чаще всего используется в производстве.
  3. Ротационный фрезер способен обрабатывать кромки, а также вырезать отверстия на металле, стекле и гипсокартоне.
  4. Лемельный фрезер используется исключительно для подбора и подгона пазов.
  5. Фрезер присадочного типа используется среди специалистов в области столярного дела, вырезает двойные отверстия для подгона по шканты.

Из вышерассмотренных видов фрезеров универсальным считается вертикальный фрезер, он понятен в использовании и способен выполнять многие работы.

Общее устройство фрезерного станка

Каждый вид фрезерного станка имеет свои специфические нюансы в конструкции, но общее устройство у них аналогично. Можно выделить наиболее важные узлы и механизмы, обеспечивающие важнейшие функции.

Схема фрезерного станка

Большинство фрезерных станков имеет унифицированную конструкцию. В них задействована универсальная кинематическая схема. Вращательное движение обеспечивает асинхронный электродвигатель достаточной мощности. Крутящий момент на вал передается цепной передачей через муфту полужесткого типа. Далее предусмотрена коробка передач, включающая до 8 зубчатых колес. Она позволяет обеспечить вращение рабочего вала по нескольким схемам. Вертикальная подача имеет диапазон от 8 до 267 мм/мин, а поперечная и продольная – от 25 до 800 мм/мин.

Универсальность конструкции создает обгонная муфта на реверсную коробку. Крутящие моменты поступают на шариковую предохранительную муфту, настроенную на максимально допустимую скорость. В конструкцию станков входят нижеследующие основные узлы.

Основание

Агрегат устанавливается на чугунное цельнолитое основание, обеспечивающее его устойчивость при работе. В нем предусмотрено корыто для сбора отработанной охлаждающей жидкости. На основании устанавливается электронасос для подачи жидкости к рабочему инструменту. Данная деталь имеет простую форму для удешевления производства.

Станина

На основании с помощью болтов надежно закрепляется станина. Это важнейшая деталь (по сути, корпус), на которой монтируются основные узлы. Часть узлов установлена внутри станины (шпиндель, электродвигатель, коробка передач), а некоторые детали станка размещены снаружи. Вверху располагаются горизонтальные направляющие для передвижения ползуна, а спереди – вертикальные направляющие консоли или бабки шпинделя. Для повышения жесткости конструкции внутренняя полость усилена ребрами. Обычно станина изготавливается из стали или чугуна. Она может быть литой или сварной.

Ползун

Для фиксации и поддержки оснастки применяется ползун или хобот. В горизонтальных и универсальных станках он является обязательным элементом, а на вертикальных может отсутствовать. Узел устанавливается на конце горизонтальных направляющих станины. В вертикальных станках хобот может являться подвижной частью фрезерной головки для перемещения фрезы в вертикальном направлении.

Консоль

Работа всего фрезера во многом зависит от качества изготовления консоли. Эта деталь изготавливается из чугуна методом литья. Устанавливается на вертикальных направляющих станины. В задачу консоли входит перемещение горизонтальных направляющих для салазок. Прочность узла обеспечивается стойкой с винтом телескопического типа, регулирующим высоту, а также боковыми поддержками.

Салазки

Взаимосвязь между осями X и Y устанавливают салазки. На них крепятся верхние направляющие для передвижения рабочего стола в продольном направлении. Снизу монтируются направляющие для перемещения самих салазок по консоли. В горизонтальных станках салазки используются для горизонтального перемещения детали.

На столе установлены зажимы для обрабатываемой детали. Он монтируется на салазках и перемещается на них. Вместе с консолью и салазками стол отвечает за подачу заготовки в рабочую зону. Он может двигаться в продольном, поперечном и вертикальном направлении. На станках, как правило, обеспечивается ручное и механическое управление подачей. У большинства станков предусмотрена функция ускорения движения стола (быстрый ход). Рабочие подачи регулируются многоступенчатым переключателем (коробка переключения). Их режим выбирает работник с учетом типа материала и вида фрезы.

Читать еще:  Технические характеристики и особенности эксплуатации токарного станка Корвет

Шпиндель

Один из главных узлов – шпиндель. Он предназначен для крепления фрезы и передачи ей вращающего движения. Крутящий момент на вал шпинделя передается с коробки скоростей. Данный узел должен обладать высокой прочностью и жесткостью, а также точностью размеров. Изготавливается из высоколегированной стали, прошедшей закалку. Шпиндель при изготовлении тщательно шлифуется и проходит балансировку. В вертикальных станках регулируется по высоте и углу наклона относительно заготовки.

Электродвигатели

Фрезерный станок обладает несколькими электродвигателями. Главный мотор имеет наибольшую мощность. Он устанавливается в шпиндельной бабке или колонне станины. На коробке подач закрепляется двигатель, обеспечивающий рабочую и ускоренную подачу. На консоли в станке консольного типа устанавливается отдельный двигатель, отвечающий за ее перемещения. Предусмотрен также специальный двигатель небольшой мощности для подачи охлаждающей жидкости к инструменту. Размещается в поддоне основания или емкости для сбора стружки.

Фрезерные станки выпускаются нескольких типов в зависимости от расположения шпинделя, способа перемещения заготовки и управления. Они имеют определенную специфику исполнения, но составляются из двигательной, передаточной и исполнительной частей. При различии компоновки станки обладают аналогичными по назначению деталями.

  • 06 сентября 2020
  • 491

Руководство по плунжерному фрезерованию: для чего применяется, преимущества и недостатки.

Вам предстоит выполнить сложную работу по обработке материала, но у вас слишком слабое оборудование либо деталь имеет сложную геометрию (например, глубокие полости)? Если да, то вам поможет плунжерное фрезерование.

Для чего нужно плунжерное фрезерование?

Давайте сначала разберемся, что такое плунжерное (врезное) фрезерование. Метод плунжерного фрезерования заключается в формировании полости, профиля или 3D-поверхности путем внедрения спирального сверла, концевой фрезы или специального инструмента в обрабатываемый материал по вертикали.


Плунжерное фрезерование полости

Данный рисунок подготовлен в программе и демонстрирует процедуру фрезерования полости. Как видно из рисунка, цепочка отверстий фрезеруется вертикально, обеспечивая черновое снятие материала большей части полости. После этого проводится чистовая обработка.

Преимущества плунжерного фрезерования

В некоторых ситуациях оно позволяет повысить эффективность работы. Плунжерное фрезерование обладает двумя важными свойствами, имеющими определенные преимущества:

    Спиральные сверла обеспечивают большую скорость съема материала по сравнению с концевыми фрезами.

  • У большинства станков с ЧПУ ось Z является наиболее жесткой. Приложение силы вдоль вертикальной оси Z вместо радиальных сил по оси XY позволяет добиться более эффективной обработки – если нарисовать кратко схему приложения сил, можно увидеть, что при плунжерном фрезеровании рычаг равен расстоянию от оси шпинделя до направляющих, а при обычном – от конца фрезы до направляющих. Второе расстояние на порядок больше, следовательно, и момент, действующий на шпиндельную ось тоже.
  • Осознав эти преимущества, вы сразу поймете, почему плунжерное фрезерование может стать вашим секретным оружием.
    Возможно, вы работаете с относительно легким оборудованием или оборудованием, не обеспечивающим достаточную жесткость. Наибольшую жесткость станок имеет по оси Z, благодаря чему вы можете добиться большей скорости съема материала. Кроме того, таким образом решается проблема вибрации, связанная с недостатком жесткости.

    Устаревшие или дешевые фрезерные станки с ЧПУ не обеспечивают достаточную жесткость по осям XY, характеризуются менее точную интерполяцию и низкими частотами вращения шпинделя, поэтому применение метода плунжерного фрезерования по оси Z может принести оператору таких станков значительную выгоду. Плунжерное фрезерование будто специально разработано для обрабатывающего оборудования любительского уровня, имеющего недостаточную жесткость и производительность.

    Плунжерное фрезерование может быть идеальным вариантом с точки зрения жесткости для работы с глубокими полостями, при обработке которых поперечные силы приводят к деформации инструмента и снижению эффективности работы. По мнению большинства специалистов, плунжерное фрезерование дает преимущества при обработке на глубину более 4 диаметров инструмента.

    А что насчет токарно-фрезерных станков, не обеспечивающих достаточную жесткость при фрезеровании по сравнению с фрезерными станками? И снова на помощь может прийти плунжерное фрезерование.
    Плунжерное фрезерование также может быть решением проблем при ограниченной частоте вращения шпинделя.


    Данный рисунок демонстрирует эффектив-
    ность 5-осного плунжерного фрезерования
    колеса турбины с точки зрения
    обеспечения жесткости

    Как насчет обработки тонких стенок? Эта печально известная проблема может быть частично решена плунжерным фрезерованием. Эта методика не поможет полностью решить проблему, поскольку в любом случае придется производить чистовую обработку для удаления волнообразных кромок, однако она позволит добиться более высокой скорости съема материала и снизить вибрацию при черновой обработке.

    Фактически, метод плунжерного фрезерования может использоваться в любой ситуации, когда вибрация является довольно ощутимой проблемой.

    Другим специальным применением метода плунжерного фрезерования является очистка углов. Когда глубина угла превышает 4 диаметра фрезы, которая проходит в обрабатываемый угол, может возникнуть проблема с жесткостью.

    Плунжерное фрезерование способно решить эту проблему в довольно сложных случаях:


    Плунжерное фрезерование углов

    Можно было бы выполнить черновую обработку с использованием траектории для высокоскоростной обработки и концевой фрезы, которая имеет достаточно большой диаметр для обработки углов. В зависимости от формы полости, такой вариант может позволить удалить большую часть материала, не оставляя волнообразных кромок. Для чистовой или получистовой обработки стоит использовать концевую фрезу гораздо меньшего диаметра, производя очистку угла и общую чистовую обработку стенок полости или профиля.

    Читать еще:  Токарно-винторезный станок 1К62. Электрическая принципиальная схема.

    Недостатки плунжерного фрезерования

    При плунжерном фрезеровании остаются волнообразные кромки, которые могут потребовать значительных усилий по зачистке при получистовом проходе перед чистовой обработкой.

      Волнообразные кромки: при плунжерном фрезеровании остаются волнообразные кромки (см. рисунок выше), которые необходимо убирать при чистовой обработке. Значительное влияние на трудоемкость обработки оказывает разрешение по осям X и Y. При этом может понадобиться дополнительный получистовой проход для среза кромок перед чистовой обработкой.

    Центральный проход: Используемый инструмент должен быть либо предназначен для выполнения центрального прохода (за исключением концевых фрез с многогранными режущими пластинами), либо траектория должна позволять вход под углом или по спирали с целью обеспечения достаточного пространства для частичного захода инструмента. Если инструмент не предназначен для центрального прохода, он не в состоянии срезать наклонную поверхность в углублениях.

  • Плунжерное 2D и 3D-фрезерование: Некоторые траектории плунжерного фрезерования поддерживают только 2D-обработку, при которой дно полости находится на той же оси Z, однако существуют траектории для полного 3D-профилирования при плунжерном фрезеровании.
    • Типовые спиральные сверла: Точечный угол обычных спиральных сверл является причиной их отклонения при плунжерном фрезеровании со слишком большим перекрытием отверстий. При этом вы также столкнетесь с волнообразным дном полости, что весьма нежелательно. Такая обработка может потребовать использования инструментов с плоской носовой частью, таких как концевые фрезы или специальные спиральные сверла для плунжерного фрезерования.

    Плунжерное фрезерование является не лучшим вариантом при благоприятных условиях. Плунжерное фрезерование не является основной методикой, заменяющей другие способы обработки. Лучше всего использовать метод плунжерного фрезерования в случаях, когда очевидны его преимущества: обеспечение большей жесткости при меньшей мощности. Если у вас нет проблем с жесткостью и мощностью, плунжерное фрезерование не является оптимальным способом обработки по сравнению с другими вариантами черновой обработки, например, использованием траекторий для высокоскоростной обработки (HSM).

    Какие программные CAM-пакеты поддерживают плунжерное фрезерование?

    Ниже приведен перечень наиболее популярных CAM-программ, который поясняет, поддерживает ли указанный программный пакет плунжерное
    фрезерование:

    Для обеспечения качества плунжерного фрезерования необходимо проверить, поддерживает ли ваше ПО следующие возможности:

    Во-первых, поддерживает ли пакет плунжерное 3D-фрезерование или только 2D? 3D-фрезерование может использоваться для многих задач, в то время как 2D-фрезерование применимо только для задач с плоским дном полости.

    Во-вторых, необходимо узнать, отводится ли инструмент от стенки при выводе его из полости? Эта функция позволяет уменьшить вибрацию и продлить срок службы инструмента при обработке твердых материалов. Ниже приведена схема отвода инструмента при плунжерном фрезеровании, совместно разработанная компаниями WorkNC и Ingersoll:


    Отвод инструмента от стенки при
    плунжерном фрезеровании

    Отвод инструмента от стенки при плунжерном фрезеровании позволяет продлить срок службы фрезы на 10-15 процентов, в зависимости от конкретной используемой технологии.

    Что делать, если программное обеспечение не поддерживает плунжерное фрезерование?

    Как правило, если ваше программное обеспечение не поддерживает определенные траектории движения фрезы, то это считается большой проблемой. Однако, обладая определенными навыками, возможно исправить ситуацию. Основная схема реализации траектории движения инструмента при плунжерном фрезеровании заключается в следующем:

      Используйте ваше ПО для формирования сетки отверстий (круглых, либо любой другой формы) в рамках контура полости или другой обрабатываемой поверхности. Убедитесь, что вы оставили припуск на чистовую обработку. Возможно, в зависимости от сложности размещения отверстий внутри контура, вам придется увеличить припуск. Ваше программное обеспечение выполнит основную работу, поэтому можете ему довериться при формировании сетки отверстий. Даже если ПО является не лучшим в данной области, большинство программных пакетов позволяет создавать сетку в прямоугольной области или выстраивать отверстия в линию, чтобы впоследствии вы смогли соединить их.

  • На основе сетки отверстий вы разрабатываете программный код для ввода фрезы в каждое отверстие в соответствии с заданными координатами. Это также просто, как заполнение перечня координат отверстий при разработке полного цикла сверления. Существуют определенные вариации. Например, вы можете вручную запрограммировать отход резца от стенок. Кроме того, вам необходимо предусмотреть способ первоначального входа в материал. Самым простым решением этой задачи является использование встроенных кодов вашего ПО для определения начальной точки программы плунжерного фрезерования.
  • Если вы обладаете хотя бы небольшими навыками программирования и использования ПО, данная задача окажется относительно простой и не отнимет у вас много времени.

    Вот небольшой пример, созданный в Rhino3D:

    1. Определите контур полости. Задайте припуск на чистовую обработку. Контур с заданным припуском выглядит следующим образом:

    Контур полости с припуском на чистовую обработку

    2. Разместите на поле круг диаметром, соответствующим диаметру концевой фрезы, таким образом, чтобы касался границы припуска:

    3. Создайте массив отверстий с шагом (перемещением фрезы между проходами) X и Y, который вы будете использовать:

    4. Удалите все лишние отверстия, выходящие далеко за границы полости:

    5. Скорректируйте положение оставшихся отверстий таким образом, чтобы они касались всех контуров с припуском, которые они пересекают:

    Готово! Теперь у вас есть схема всех необходимых отверстий, соответствующих проходам фрезы.
    Импортируйте схему в ваше ПО и просто работайте с ней как с обычными отверстиями. В результате будет сгенерирован код, доступный для редактирования в дальнейшем.

    На этом программирование не окончено, однако данная работа заняла всего 10 минут, без использования каких-либо шаблонов. Если вам нужно составить простую схему плунжерного фрезерования, эта работа является несложной. Подобное программирование для очистки углов является еще более простой задачей и займет еще меньше времени.

    Подводя итоги можно смело сказать, что плунжерное фрезерование может быть секретным оружием в вашем арсенале средств работы со станками с ЧПУ.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector